基于渐进时空特征融合的红外弱小目标检测
作者:
作者单位:

1.上海大学 通信与信息工程学院,上海 200444;2.中国科学院 微小卫星创新研究院,上海 201203

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科学自然基金(62372284)


Progressive spatio-temporal feature fusion network for infrared small-dim target detection
Author:
Affiliation:

1.School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;2.Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201203, China

Fund Project:

Supported by the National Natural Science Foundation of China (62372284)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为避免现有多帧红外弱小目标检测算法在显式对齐多帧特征时产生的估计误差累积,并缓解网络降采样导致的目标特征丢失,提出了一种渐进时空特征融合网络,采用渐进时序特征累积模块隐式地聚合多帧信息,并利用多尺度空间特征融合模块增强浅层细节特征与深层语义特征之间的交互。针对多帧红外弱小目标数据集稀缺的现状,构建了一个高度真实的半仿真数据集。与主流算法相比,提出的算法在所提出数据集和公开数据集上的检测概率分别提升了4.69%与4.22%。

    Abstract:

    To avoid the accumulation of estimation errors from explicitly aligning multi-frame features in current infrared small-dim target detection algorithms, and to alleviate the loss of target features due to network downsampling, a progressive spatio-temporal feature fusion network is proposed. The network utilizes a progressive temporal feature accumulation module to implicitly aggregate multi-frame information and utilizes a multi-scale spatial feature fusion module to enhance the interaction between shallow detail features and deep semantic features. Due to the scarcity of multi-frame infrared dim target datasets, a highly realistic semi-synthetic dataset is constructed. Compared to the mainstream algorithms, the proposed algorithm improves the probability of detection by 4.69% and 4.22% on the proposed dataset and the public dataset, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-24
  • 最后修改日期:2024-11-13
  • 录用日期:2024-05-06
  • 在线发布日期: 2024-11-12
  • 出版日期:
文章二维码