用于单次曝光压缩成像的深度即插即用自监督神经网络
作者:
作者单位:

1.国科大杭州高等研究院 物理与光电工程学院,浙江 杭州,310024;2.中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083;3.中国科学院大学,北京 100049

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:


Deep plug-and-play self-supervised neural networks for spectral snapshot compressive imaging
Author:
Affiliation:

1.School of Physics and Optoeletronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;2.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;3.University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

Supported by the Zhejiang Provincial "Jianbing" and "Lingyan" R&D Programs (2023C03012, 2024C01126)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于压缩感知理论的编码孔径快照式光谱成像系统可以看作编码器,高效获取压缩后的二维光谱数据,再通过深度神经网络解码为三维光谱数据。然而,深度神经网络的训练需大量难以获得的干净数据。针对深度神经网络训练数据不足的问题,提出一种基于邻域采样思想的自监督高光谱去噪神经网络,并将其嵌入到深度即插即用框架中,最终实现自监督光谱重建,并验证不同噪声退化模型对最终重建质量的影响。实验表明,在不需要干净数据作为标签的情况下,自监督学习方法相较有监督学习方法的平均峰值信噪比提升1.18 dB,结构相似度提升0.009,且获得了更优的视觉重建效果。

    Abstract:

    The encoding aperture snapshot spectral imaging system, based on the compressive sensing theory, can be regarded as an encoder, which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks. However, training the deep neural networks requires a large amount of clean data that is difficult to obtain. To address the problem of insufficient training data for deep neural networks, a self-supervised hyperspectral denoising neural network based on neighborhood sampling is proposed. This network is integrated into a deep plug-and-play framework to achieve self -supervised spectral reconstruction. The study also examines the impact of different noise degradation models on the final reconstruction quality. Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method. Additionally, it achieves better visual reconstruction results.

    参考文献
    相似文献
    引证文献
引用本文

张星宇,朱首正,周天舒,亓洪兴,王建宇,李春来,刘世界.用于单次曝光压缩成像的深度即插即用自监督神经网络[J].红外与毫米波学报,2024,43(6):846~857]. ZHANG Xing-Yu, ZHU Shou-Zheng, ZHOU Tian-Shu, QI Hong-Xing, WANG Jian-Yu, LI Chun-Lai, LIU Shi-Jie. Deep plug-and-play self-supervised neural networks for spectral snapshot compressive imaging[J]. J. Infrared Millim. Waves,2024,43(6):846~857.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-11-11
  • 录用日期:2024-04-10
  • 在线发布日期: 2024-11-06
  • 出版日期:
文章二维码