用于单次曝光压缩成像的深度即插即用自监督神经网络
DOI:
作者:
作者单位:

1.国科大杭州高等研究院,浙江 杭州,310024;2.中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083;3.中国科学院大学,北京 100049

作者简介:

通讯作者:

中图分类号:

基金项目:


Deep Plug-and-Play Self-Supervised Neural Networks for Spectral Snapshot Compressive Imaging
Author:
Affiliation:

1.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;2.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;3.University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

Supported by the National Natural Science Foundation of China (…….) ; XXX Foundation of China (…..);……

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于压缩感知理论的编码孔径快照式光谱成像系统可以看作编码器,高效获取压缩后的二维光谱数据,再通过深度神经网络解码为三维光谱数据。然而,深度神经网络的训练需大量难以获得的干净数据。针对深度神经网络训练数据不足的问题,提出一种基于邻域采样思想的自监督高光谱去噪神经网络,并将其嵌入到深度即插即用框架中,最终实现自监督光谱重建,并验证不同噪声退化模型对最终重建质量的影响。实验表明,在不需要干净数据作为标签的情况下,自监督学习方法相较有监督学习方法的平均峰值信噪比提升1.18dB,结构相似度提升0.009,且获得了更优的视觉重建效果。

    Abstract:

    The coded aperture snapshot spectral imaging system, based on compressed sensing theory, functions as an capable of efficiently acquiring compressed two-dimensional spectral data. This data is subsequently decoded into three-dimensional spectral data through a deep neural network. However, training the deep neural network necessitates a substantial amount of clean data, which is often challenging to obtain. To address the issue of insufficient training data for deep neural network, a self-supervised hyperspectral denoising neural network is proposed, leveraging the concept of neighborhood sampling. This network is integrated into the deep plug-and-play framework, enabling self-supervised spectral reconstruction. The study also examines the impact of different noise degradation models on the final reconstruction quality. Experimental results demonstrate that compared with supervised learning method, the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18dB and improves the structural similarity is improved by 0.009. Additionally, it achieves superior visual reconstruction outcomes without relying on clean data as labels.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-07-24
  • 录用日期:2024-04-10
  • 在线发布日期: 2024-07-15
  • 出版日期:
文章二维码