多波长薄膜厚度检测方法研究
作者:
作者单位:

1.上海科技大学 物质科学与技术学院,上海 201210;2.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083;3.上海节能镀膜玻璃工程技术研究中心,上海 200083;4.上海市光学薄膜与光谱调控重点实验室,上海 200083;5.中国科学院上海技术物理研究所,上海 200083

中图分类号:

O43


Study on multi-wavelength thin film thickness determination method
Author:
  • SHI Ce 1,2,3,4

    SHI Ce

    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China;Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIE Mao-Bin 2,3,4

    XIE Mao-Bin

    State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China;Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Wei-Bo 5

    ZHENG Wei-Bo

    Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Ruo-Nan 2,3,4

    JI Ruo-Nan

    State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China;Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shao-Wei 2,3,4

    WANG Shao-Wei

    State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China;Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Wei 1,2,3

    LU Wei

    School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;2.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;3.Shanghai Engineering Research Center of Energy-Saving Coatings, Shanghai 200083, China;4.Shanghai Key Laboratory of Optical Coatings and Spectral Modulation, Shanghai 200083, China;5.Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Fund Project:

Supported by National Key R&D Program of China (2021YFA0715500), National Natural Science Foundation of China (NSFC) (12227901), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB0580000), Shanghai Municipal Science and Technology Major Project(2019SHZDZX01) and Chinese Academy of Sciences President''s International Fellowship Initiative (2021PT0007).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本工作提出了一种新的薄膜厚度检测方法,该多波长方法显著地降低了膜厚检测对于宽光谱数据的需要。不同于需要几百个光谱数据点的传统技术,多波长方法在仅采用10个波长数据点的情况下即可实现精确的膜厚测量。这一创新不仅简化了光谱测量分析的过程,同时也使得工业化镀膜产线上实时的膜厚准确检测成为可能。该方法能够在使用少量数据的情况下有效地恢复和拟合可见波段光谱(400~800 nm),同时能够很好地将膜厚检测误差保持在7.1%以内。这一进展为许多工业应用中更加实用而高效的薄膜厚度检测技术奠定了基础。

    Abstract:

    This work introduces a novel method for measuring thin film thickness, employing a multi-wavelength method that significantly reduces the need for broad-spectrum data. Unlike traditional techniques that require several hundred spectral data points, the multi-wavelength method achieves precise thickness measurements with data from only 10 wavelengths. This innovation not only simplifies the process of spectral measurement analysis but also enables accurate real-time thickness measurement on industrial coating production lines. The method effectively reconstructs and fits the visible spectrum (400-800 nm) using a minimal amount of data, while maintaining measurement error within 7.1%. This advancement lays the foundation for more practical and efficient thin film thickness determination techniques in various industrial applications.

    参考文献
    [1] Chang T C, Cao X, Dedon L R, et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings [J]. Nano Energy, 2018, 44: 256-264. DOI:10.1016/j.nanoen.2017.11.061
    [2] Yao L, Qu Z, Pang Z L, et al. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows [J]. Small, 2018, 14(34): 1801661. DOI:10.1002/smll.201801661
    [3] Gao Y F, Wang S B, Luo H J, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 coreshell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control [J]. Energ. Environ. Sci., 2012, 5(12): 6104-6110. DOI:10.1039/c2ee02803d
    [4] Garlisi C, Trepci E, Li X, et al. Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties [J]. Appl. Energ., 2020, 264: 114697. DOI:10.1016/j.apenergy.2020.114697
    [5] Xuan Z Y, Li J Y, Liu Q Q, et. al. Artificial structural colors and applications [J]. The Innovation, 2021, 2(1): 100081. DOI:10.1016/j.xinn.2021.100081
    [6] Jaglarz J, Sanetra J, Cisowski J. Studies of polymer surface topography by means of optical profilometry [J]. Opt. Appl., 2010, 40(4): 767-772.
    [7] Kim D W, Kwon M, Park S, et al. Measurement of the thickness and refractive index of a thin film by analyzing reflected interference fringes [J]. Appl. Optics, 2023, 62(30): 8018-8024. DOI:10.1364/ao.502870
    [8] Yu C J, Hung C H, Hsu K C, et al. Phase-shift imaging ellipsometer for measuring thin-film thickness [J]. Microelectron Reliab, 2015, 55(2): 352-357. DOI:10.1016/j.microrel.2014.10.014
    [9] Kal S, Kasko I, Ryssel H. Noncontacting measurement of thickness of thin titanium silicide films using spectroscopic ellipsometer [J]. IEEE Electr Device L, 1998, 19(4): 127-130. DOI:10.1109/55.663536
    [10] Hassani K, Abbaszadeh K. Thin film characterization with a simple Stokes ellipsometer [J]. Eur. J. Phys., 2015, 36(2): 025017. DOI:10.1088/0143-0807/36/2/025017
    [11] Kostejn M, Fajgar R, Drinek V, et al. Determination of composition and thickness of MnSi and MnGe layers by EDS [J]. J. Nondestruct Eval., 2020, 39: 1-11. DOI:10.1007/s10921-020-00685-2
    [12] Franquet A, Conard T, Gilbert M, et al. Thickness and composition measurements of nanoelectronics multilayer thin films by energy dispersive spectroscopy (EDS) [J]. J. Phys. Conf. Ser., 2013, 417: 012033. DOI:10.1088/1742-6596/417/1/012033
    [13] Liu X X, Wang S W, Xia H, et al. Interference-aided spectrum-fitting method for accurate film thickness determination [J]. Chin. Opt. Lett., 2016, 14(8): 081203. DOI:10.3788/col201614.081203
    [14] Xie M B, Wu Z Y, Cui H Y, et al. On-site determination of optical constants for thin films [J]. J. Infrared Millim. W., 2022, 41(5): 888-893.
    [15] Cui Z Z, Yan Y H, Liu Q Q, et al. Accurate determination of low-dimensional materials'' complex refractive index by cavity resonant method [J]. Opt. Mater., 2022, 131: 112682. DOI:10.1016/j.optmat.2022.112682
    [16] Yu Z, Li H, Zhong T, et al. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields [J]. The Innovation, 2022, 3(5): 100292. DOI:10.1016/j.xinn.2022.100292
    [17] Rademacher D, Verg?hl M, Richter U. In situ thickness determination of multilayered structures using single wavelength ellipsometry and reverse engineering [J]. Appl. Optics, 2011, 50(9): C222-C227. DOI:10.1364/ao.50.00c222
    [18] Gudmundsson J T. Physics and technology of magnetron sputtering discharges [J]. Plasma Sources Sci. T., 2020, 29: 113001. DOI:10.1088/1361-6595/abb7bd
    [19] Depla D, Mahieu S, De Gryse R. Magnetron sputter deposition: Linking discharge voltage with target properties [J]. Thin Solid Films, 2009, 517(9): 2825-2839. DOI:10.1016/j.tsf.2008.11.108
    [20] Colligon J S. Ion-assisted sputter deposition [J]. Philos. T. Roy. Soc. A, 2004, 362(1814): 103-116. DOI:10.1098/rsta.2003.1303
    [21] Kelly P J, Arnell R D. Magnetron sputtering: a review of recent developments and applications [J]. Vacuum, 2000, 56(3): 159-172. DOI:10.1016/s0042-207x(99)00189-x
    [22] Carcia P F, Mclean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J]. Appl. Phys. Lett., 2003, 82(7): 1117-1119. DOI:10.1063/1.1553997
    [23] Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition (IPVD): A review of technology and applications [J]. Thin Solid Films, 2006, 513(1-2): 1-24. DOI:10.1016/j.tsf.2006.03.033
    [24] Chang L, Liu X H, Luo J, et al. Physiochemical coupled dynamic nanosphere lithography enabling multiple metastructures from single mask [J]. Adv. Mater., 2024, 36: 2310469. DOI:10.1002/adma.202310469
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施策,谢茂彬,郑伟波,冀若楠,王少伟,陆卫.多波长薄膜厚度检测方法研究[J].红外与毫米波学报,2024,43(6):813~819]. SHI Ce, XIE Mao-Bin, ZHENG Wei-Bo, JI Ruo-Nan, WANG Shao-Wei, LU Wei. Study on multi-wavelength thin film thickness determination method[J]. J. Infrared Millim. Waves,2024,43(6):813~819.]

复制
分享
文章指标
  • 点击次数:122
  • 下载次数: 314
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 最后修改日期:2024-11-08
  • 录用日期:2024-04-17
  • 在线发布日期: 2024-11-06
文章二维码