晶体锗掺硼的离子注入工艺与晶格损伤机理研究
DOI:
作者:
作者单位:

1.中国科学院上海技术物理研究所;2.中国科学院大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2023YFA1608701),国家自然科学基金(62274168, 11933006和U2141240)和杭州创新团队项目(TD2020002)


Ion Implantation Process and Lattice Damage Mechanism of Boron Doped Crystalline Germanium
Author:
Affiliation:

1.Shanghai Institute of Technical Physics,Chinese Academy of Sciences;2.University of Chinese Academy of Sciences

Fund Project:

National Key R&D Program of China (No. 2023YFA1608701), National Natural Science Foundation of China (Nos. 62274168, 11933006 and U2141240), and Hangzhou Leading Innovation and Entrepreneurship Team (No. TD2020002)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锗掺硼(Ge:B)阻挡杂质带结构红外探测器的响应波长可达200微米,是最重要的甚长波长红外天文探测器。离子注入方法简化了器件的制造过程,但容易造成晶格损伤,引入晶体缺陷,并导致探测器暗电流增加。本文对锗掺硼离子注入工艺进行了研究,并对晶格损伤机制进行了讨论。实验条件包括使用80keV能量进行硼离子注入,剂量范围为1×10^13至1×10^15cm^-2。注入后,在450°C下进行热退火,以优化掺杂剂活化并减轻离子注入的影响。使用各种表征技术,包括X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和二次离子质谱(SIMS)来阐明晶格损伤。在较低剂量下,未观察到明显的结构变化。然而,随着剂量增加,特定的微变形变得明显,这可能归因于点缺陷和残余应变。所产生的晶格损伤通过热处理得以恢复,然而,在高剂量下,注入引起的不可逆应变仍然存在。

    Abstract:

    The response wavelength of the boron doped germanium (Ge:B) blocked-impurity-band (BIB) structured infrared detector can reach 200μm, which is the most important very long wavelength infrared astronomical detector. The ion implantation method greatly simplifies the fabrication process of the device, but it is easy to cause lattice damage, introduce crystalline defects, and lead to the increase of the dark current of detectors. Herein, the boron-doped germanium ion implantation process was studied, and the involved lattice damage mechanism was discussed. Experimental conditions involved using 80 keV energy for boron ion implantation, with doses ranging from 1×10^13 to 1×10^15cm^-2. After implantation, thermal annealing at 450°C was implemented to optimize dopant activation and mitigate the effects of ion implantation. Various sophisticated characterization techniques, including X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS) were used to clarify lattice damage. At lower doses, no notable structural alterations were observed. However, as the dosage increased, specific micro distortions became apparent, which could be attributed to point defects and residual strain. The created lattice damage was recovered by thermal treatment, but an irreversible strain induced by implantation still existed at the high doses.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:2024-02-24
  • 录用日期:2024-03-12
  • 在线发布日期:
  • 出版日期: