基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法
作者:
作者单位:

1.中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海200083;2.中国科学院大学,北京100049

作者简介:

通讯作者:

中图分类号:

TN215;TPT51.1

基金项目:


Pixel gradient-based adaptive iterative median filter for image impulse noise removal
Author:
Affiliation:

1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

The study was by funded by the National Civil Aerospace Project of China (D040102)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像脉冲噪声移除是获得高质量图像的关键。本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法。首先,根据相机的调制传递函数计算获取原始图像的最大像素梯度,继而建立相应的像素梯度集合。然后,计算原始图像与对应像素梯度滤波图像的梯度权重均方根误差集合,并将该集合高斯分布的最大值对应的像素梯度确定为最佳像素梯度。最后,根据图像中脉冲噪声的密度和复杂度,确定所提滤波器的自适应窗口大小和迭代次数。大量实验结果表明,所提滤波器对移除8位、16位的单通道脉冲噪声图像展现出良好的鲁棒性。与其他先进方法相比,该方法可以实时移除真实热红外相机采集图像中低密度的随机值脉冲噪声和SAPN,并实现噪声抑制过程中99.5%以上的原始像素不会遭受破坏。除此之外,针对高密度SAPN抑制,该方法获得了具有竞争力的结果,与运行时间较快的滤波方法相比表现出较好的PSNR和SSIM,与PSNR和SSIM较优秀的去噪方法相比表现出较快的运行时间。对于极限SAPN(99%)破坏的图像,也能够恢复有意义的图像细节。

    Abstract:

    Image impulse noise removal is essential for obtaining high-quality images. A novel pixel gradients-based adaptive iterative median filter is proposed to remove image impulse noise by utilizing the principles of thermal infrared camera imaging. Firstly, the maximum pixel gradient of the original image is computed based on the camera''s modulation transfer function (MTF), and a corresponding set of pixel gradients is established. Subsequently, the gradient weight root-mean-square error (GWRMSE) set of the original image and the corresponding pixel gradient filtered image is computed, and the optimal pixel gradient is determined as the one corresponding to the maximum value of Gaussian distribution of the GWRMSE set. Finally, the adaptive window size and number of iterations for the proposed filter are determined according to the density and complexity of the impulse noise in the image. Extensive experimental results demonstrate that the proposed filter exhibits excellent robustness in removing 8-bit and 16-bit single-channel impulse noise images. In comparison with other state-of-the-art methods, the proposed method can remove low-density random-valued impulse noise (RVIN) and salt-and-pepper noise (SAPN) in real thermal infrared camera-acquired images in real-time while preserving more than 99.5% of original pixels during the noise removal process. Additionally, for high-density SAPN removal, the proposed method achieves competitive results, demonstrating better peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) in comparison with filtering methods of faster running time and faster execution time in comparison with denoising methods of superior PSNR and SSIM. Moreover, it can recover meaningful image details even for images severely damaged by extreme SAPN (99%).

    参考文献
    相似文献
    引证文献
引用本文

金祥博,王跃明.基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法[J].红外与毫米波学报,2024,43(3):423~436]. JIN Xiang-Bo, WANG Yue-Ming. Pixel gradient-based adaptive iterative median filter for image impulse noise removal[J]. J. Infrared Millim. Waves,2024,43(3):423~436.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-11
  • 最后修改日期:2024-04-13
  • 录用日期:2024-01-09
  • 在线发布日期: 2024-04-12
  • 出版日期:
文章二维码