大气介质红外辐射场混沌与分形特征
DOI:
作者:
作者单位:

中国科学院上海技术物理研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

中国科学院百人计划项目


Chaotic and fractal characteristics of Infrared electromagnetic wavefield in the media of atmosphere
Author:
Affiliation:

Shanghai Institutes of Technical Physics, Chinese academy of Sciences

Fund Project:

100 Talents Program of the Chinese Academy of Sciences

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大气介质是红外光学的重要传播媒介,也是影响红外动态信号检测与追踪的复杂背景。与固、液介质相对稳定的性质相比,大气介质具有动态复杂性与长期不可预测性,阻碍了将其它领域成功的波动技术(如弹性波成像与反演;量子场波函数等)引入大气电磁波场,故传统经典物理学理论无法精确刻画此类复杂系统问题。但自然界此类场中产生的无序性与随机性通常可用分形的概念来阐述。利用风云4A气象卫星记录的红外云图,将传统静态红外图像研究拓展到四维时空域红外动态影像研究,从而获得区域全波段红外(波段0.450.5 指示强混沌性,k~0 随机序列排列熵,则数据具有随机性。由区域不同像素点记录的波信号的排列熵值,本文首次给出了大气红外辐射波场的混沌强度分布,在波段(0.45-14)内,K取值范围为(0.87~0.92) 。全波段红外数据显示强混沌性。本文的工作既为利用混沌特性来研究动目标及背景杂波动态演化机理、捕捉时敏微扰信号以及对水陆空红外辐1射场进行中长期非线性预测等提供了理论前提;也为建立大气红外辐射场的非保守耗散方程,刻画传输介质特性以及研究宏观与微观传播机理等基本问题奠定了实验基础。

    Abstract:

    Chaotic dynamics is one of the most significant systematic features of infrared electromagnetic wavefield to be studied. The study of chaotic dynamics of infrared.radiation wavefield can promote the development of high-performance detection, imaging and recognition of weak moving time-variant signals. We establish 4D time-space observing system to record the time-space-variant infrared signal for extracting the time series of dynamic system. Choosing some frequency-band Infrared data as a random time series to do FFT transform and get fractional brownian motion dimension , indicates that atmospheric infrared radiation wavefield has a fractal structure. We use time-delay analysis to build -dimension phase space, compute the fractal dimension , and find the first Lyapunov exponent remains positive in different phase spaces. These results lead to an initial conclusion that atmospheric Infrared wavefield is chaotic. Permutation entropy is to measure chaotic strength of real cases in time-space domain. As well, these results are prepared for further studies, such as dynamic evolution mechanism of moving objects and its background wavefield, capture of time-variant signals, and long-period nonlinear prediction of infrared wave behaviors in different domains.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-29
  • 最后修改日期:2023-12-05
  • 录用日期:2023-12-06
  • 在线发布日期:
  • 出版日期: