基于Landsat数据的地表温度反演差异及参数分析
DOI:
作者:
作者单位:

1.江苏大学;2.南京林业大学;3.福州大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划(973计划)


Difference and parameter analysis of LST inversion based on Landsat data
Author:
Affiliation:

1.Jiangsu University;2.Nanjing Forestry University;3.Fuzhou University

Fund Project:

National Key Research and Development Project of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    只有准确的地表温度反演算法计算出的产品数据,才能正确推广使用。研究基于Landsat-8、Landsat-9和气象站数据,对比了5种常用地表温度反演算法的反演结果,并对不同算法的反演结果和参数灵敏度进行了测试。结果表明:基于地表比辐射率参数计算的辐射传输方程和单通道算法反演结果与地面实测数据吻合较好。基于大气水汽参数计算的单窗算法和劈窗算法的反演结果均高于实测温度。基于平均温度参数计算的单窗算法反演精度误差较大。此外,比较了两种遥感数据在不同地物上的反演温度的一致性。研究结果可为地表温度反演和产品选择提供参考。

    Abstract:

    The correct use of the product is possible only when the land surface temperature (LST) data is calculated by an accurate and reliable inversion algorithm. In this paper, we compare the inversion results of five commonly used LST inversion algorithms based on Landsat-8, Landsat-9 data, and weather station data. The inversion results and parameter sensitivity analysis of different algorithms are tested. The results show that the algorithm of Landsat-8 can also be applied to Landsat-9 data. The inversion results of the Radiative Transfer Equation (RTE) and Single Channel (SC) algorithms calculated based on land surface emissivity (LSE) are in good agreement with the ground measured. The inversion results of the SC algorithm based on atmospheric water vapor inversion and the Split Window (SW) algorithm based on atmospheric water vapor inversion are higher than the measured temperature. The inversion accuracy of the Mono Window (MW) algorithm based on average temperature parameters is not ideal. In addition, the consistency of the inversion temperature of the two data on different ground objects was compared. Our study can provide a reference for land surface temperature inversion based on Landsat-9 data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-28
  • 最后修改日期:2023-08-07
  • 录用日期:2023-08-21
  • 在线发布日期:
  • 出版日期: