基于联合方向梯度和均值对比度的红外弱小目标检测方法
作者:
作者单位:

1.北京邮电大学 电子工程学院,北京 100876;2.中国电波传播研究所 第三研究部,山东 青岛 266108

中图分类号:

TP722.5


Infrared small target detection based on associated directional gradient and mean contrast
Author:
Affiliation:

1.School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;2.Third Research Department, China Institute of Radio Propagation, Qingdao 266108, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对小目标在整幅图像中占比很低,且目标周围存在大量杂波,提出了一种基于联合方向梯度(Associated Directional Gradient,ADG)和均值对比度(Mean Contrast,MC)的红外弱小目标检测算法。该算法由两个模块组成:ADG利用红外弱小目标的高斯分布模型,将单一方向的梯度与一个相邻方向上的梯度相加组成新的联合梯度特征,增强真实目标、抑制背景杂波的同时能够消除高亮边缘对目标检测效果的影响;MC融入方向信息来计算目标的多方向对比度,选用多方向对比度的最小值抑制结构噪声,并将均值滤波的思想引入对比度的计算,抑制背景中的孤立噪声,进一步降低检测的虚警率。在实际红外图像上的实验结果表明,该算法在增强目标信噪比和抑制背景噪声方面,能够取得较好效果。

    Abstract:

    The detection of infrared small targets has been a challenging task in the field of computer vision due to the low percentage of small targets in the whole image and the presence of a large amount of clutter around the targets. We propose an algorithm based on associated directional gradient and mean contrast. The algorithm consists of two modules: the associated directional gradient module uses a Gaussian distribution model of infrared small targets, and adds the gradient in a single direction with the gradient in an adjacent direction to form a new feature called associated directional gradient, which enhances the real target, suppresses background clutter, and eliminates the effect of highlighting edges on the target detection. The mean contrast module incorporates directional information to calculate multi-directional contrast of the target. The minimum value of multi-directional contrast is chosen to suppress structural noise, and the idea of mean filtering is introduced into the calculation of contrast to suppress isolated noise in the background and further reduce the false alarm rate of detection. Experimental results on actual infrared images show that the algorithm can achieve better results in enhancing the signal-to-noise ratio of the target and suppressing the background noise.

    参考文献
    [1] Zhao M, Li W, Li L,et al. Single-frame in-frared small-target detection:A survey[J]. IEEE Geoscience and Remote Sensing Magazine,2022,10( 2): 87-119. doi:10.1109/MGRS.2022.3145502.
    [2] Zhang K ,Ni S ,Yan D ,et al. Review of dim small target detec-tion algorithms in single-frame infrared images[C]// 2021 IEEE 4th Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC) . DOI:10.1109/imcec51613.2021.9482137
    [3] Deng He,Sun Xianping, Liu Maili,et al. Entropy-based window selection for detect-ing dim and small infrared targets[J]. Pattern Recognition:The Jour-nal of the Pattern Recognition Society,2017,61:66-77. DOI:10.1016/j.patcog.2016.07.036
    [4] Huang S, Peng Z, Wang Z,et al. Infrared small target detection by density peaks searching and maximum-gray region growing[J]. IEEE Geoscience and Remote Sensing Letters,2019, 16(12):1919-1923. doi:10.1109/LGRS. 2019.2912989.
    [5] Xia C, Li X, Zhao L, et al. Infrared small target detection based on multiscale local contrast measure using local energy fac-tor[J]. IEEE Geoscience and Remote Sensing Letters,2020, 17(1): 157-161. doi:10.1109/LGRS.2019.2914432.
    [6] Shi Y, Wei Y, Yao H,et al. High-boost-based multiscale local contrast measure for infrared small target detec-tion[J]. IEEE Geoscience and Remote Sensing Letters,2018, 15(1):33-37. doi:10.1109/LGRS.2017.2772030.
    [7] Deng H, Sun X, Liu M,et al. Infrared small-tar-get detection using multiscale gray difference weighted image entro-py[J]. IEEE Transactions on Aerospace and Electronic Systems,2016, 52(1):60-72. doi:10.1109/TAES. 2015. 140878.
    [8] Deshpande S D, Hwa Er M, Venkateswarlu R,et al. Max-mean and max-median filters for detection of small tar-gets[J]. Proc. SPIE 3809,Signal and Data Processing of Small Targets, 1999. https://doi.org/10.1117/12.364049.
    [9] Zeng Ming, Li Jianxun, Zhang Peng. The design of Top-Hat morpho-logical filter and application to infrared target detection[J]. Infrared Physics & Technology,2006, 48(1):67-76. https://doi.org/10.1016/j.infrared.2005.04.006.
    [10] Bai Xiangzhi, Zhou Fugen. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognition,2010, 43(6)2145-2156. https://doi.org/10.1016/j.patcog.2009.12.023.
    [11] Liu Jie, He Ziqing, Chen Zuolong,et al. Tiny and Dim infra-red target detection based on weighted local contrast[J]. IEEE geoscience and remote sensing letters,2018,15(11):1780-1784. doi: 10.1109/LGRS.2018.2856762.
    [12] Han J H, Moradi S, Faramarzi I, et al. Infrared small target detection based on the weight-ed strengthened local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters,2021, 18(9):1670-1674. doi:10.1109/LGRS.2020.3004978.
    [13] Han J, Moradi S, Faramarzi I,et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Let-ters,2020, 17(10):1822-1826. doi:10.1109/LGRS.2019.2954578.
    [14] Han J, Liang K, Zhou B,et al. Infrared Small Target Detection Utilizing the Multiscale Relative Local Con-trast Measure[J]. IEEE Geoscience and Remote Sensing Letters,vol. 15,no. 4,pp. 612-616,April 2018,doi:10.1109/LGRS. 2018. 2790909.
    [15] Chen C L P, Li H, Wei Y,et al. A local con-trast method for small infrared target detection[J]. IEEE Transac-tions on Geoscience and Remote Sensing,2014, 52(1):574-581. doi:10.1109/TGRS.2013.2242477.
    [16] Han J, Ma Y, Zhou B,et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters,2014, 11(12):2168-2172. doi:10.1109/LGRS. 2014. 2323236.
    [17] Pan Sheng-da,Zhang Su,Zhao Ming,et al. Infrared small target detection based on double-layer local contrast measure[J]. Acta Photonica Sinica,2020,49(1):0110003. DOI:10.3788/gzxb20204901.0110003
    [18] Wu L, Ma Y, Fan F,et al. A double-neighbor-hood gradient method for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(8):1476-1480. doi:10.1109/LGRS.2020.3003267.
    [19] Qiu G, Yang H, Wei Y,et al. Infrared small tar-get detection based on local multidirectional gradient[J]. 2019 Chinese Automation Congress(CAC),2019:5679-5683. doi:10.1109/CAC48633.2019.8997030.
    [20] Xia C, Chen S, Luo Y. Omnidirectional mirror gradient dis-similarity for infrared small target detection[J]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, 2022: 3255-3258. doi:10.1109/IGARSS46834.2022.9884151.
    [21] Zhang H,Zhang L,Yuan D,et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics & Technology,2018,89:88-96. DOI:10.1016/j.infrared.2017.12.018
    [22] Deng H, Sun X, Liu M,et al. Infrared small-tar-get detection using multiscale gray difference weighted image entro-py[J]. IEEE Transactions on Aerospace and Electronic Systems,vol. 52,no. 1,pp. 60-72,February 2016,doi:10.1109/TAES. 2015. 140878.
    [23] Aghaziyarati S, Moradi S, Talebi H. Small infrared tar-get detection using absolute average difference weighted by cumuli-tive directional derivatives[J]. Infrared Physics & Technology,2019,101: 78-87. https://doi.org/10.1016/j.infrared.2019.06.003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李宁,郭义放,焦继超,逄敏,徐威.基于联合方向梯度和均值对比度的红外弱小目标检测方法[J].红外与毫米波学报,2024,43(1):70~79]. LI Ning, GUO Yi-Fang, JIAO Ji-Chao, PANG Min, XU Wei. Infrared small target detection based on associated directional gradient and mean contrast[J]. J. Infrared Millim. Waves,2024,43(1):70~79.]

复制
分享
文章指标
  • 点击次数:650
  • 下载次数: 1775
  • HTML阅读次数: 130
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 最后修改日期:2023-11-28
  • 录用日期:2023-07-14
  • 在线发布日期: 2023-11-27
  • 出版日期: 2024-02-25
文章二维码