红外合成孔径衍射光学系统成像特性建模与分析
作者:
作者单位:

1.哈尔滨工业大学 空间光学工程研究中心,黑龙江 哈尔滨 150001;2.北京跟踪与通信技术研究所,北京 100094;3.哈尔滨工业大学(深圳) 计算机科学与技术学院,广东 深圳 518000

中图分类号:

O439


Modeling and analysis for imaging characteristics of infrared array-aperture diffractive optical system
Author:
Affiliation:

1.Research Center for Space Optical Engineering, Harbin Institute of Technology, Harbin 150001, China;2.Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China;3.School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518000, China

Fund Project:

Supported by the National Natural Science Foundation of China under Grant 61975043 and 61605035.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于衍射成像机理,建立红外合成孔径衍射光学系统调制传递函数(MTF)和信噪比(SNR)模型。随后,基于三维时域有限差分(FDTD)方法计算成像系统衍射效率,进而结合调制传递函数与信噪比表征系统成像特性。最后,分析了不同工作波长、视场和填充因子对主镜成像特性的影响。分析结果表明,红外合成孔径衍射光学系统的衍射效率、MTF和信噪比均具有空变、谱变特性,且随主镜填充因子的减小而降低。当填充因子为0.6时,与理想的全孔径系统相比,MTF积分面积降低45.42%,信噪比减小4.92 dB。该模型可用于分析红外合成孔径衍射光学系统成像质量,为成像系统的设计提供参考。

    Abstract:

    This paper establishes the modulation transfer function (MTF) and signal-to-noise ratio (SNR) characterization models of the infrared array-aperture diffractive optical system based on the diffraction imaging mechanism. Subsequently, the imaging system diffraction efficiency is calculated based on the three-dimensional Finite Difference Time Domain (FDTD) method and the imaging characteristics are represented by combining the MTF and SNR. Finally, the effects of different working wavelengths, field of views and filling factors of the primary lens imaging characteristics are analyzed. The analysis results show that the diffraction efficiency, the MTF and SNR of infrared array-aperture diffractive optical system all have spectral and spatial variation characteristics, which reduce with the decrease of the primary lens filling factor. When the filling factor is 0.6, the integral area of MTF decreases by 45.42% and the SNR decreases by 4.92 dB compared with the ideal full aperture system. The established model can be used to characterize the imaging quality of infrared array-aperture diffractive optical system and provide reference to the imaging system design.

    参考文献
    [1] Zhu L, Wen L, Yang P, et al. Aberration correction based on wavefront sensorless adaptive optics in membrane diffractive optical telescope[J]. Optics Communications, 2019, 451:220-225. 10.1016/j.optcom.2019.06.063
    [2] Britten J A, Dixit S N, Debruyckere M, et al. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications[J]. Applied Optics, 2014, 53(11):2312-6. 10.1364/ao.53.002312
    [3] Kendrick S E, Stahl H P . Large aperture space telescope mirror fabrication trades - art. no. 70102G[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, DOI:10.1117/12.788067.
    [4] Hyde R A . Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19):4198-212. 10.1364/ao.38.004198
    [5] Hyde R A, Dixit S N, Weisberg A H, et al. Eyeglass: A very large aperture diffractive space telescope[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2002, DOI: 10.1117/12.460420.
    [6] Atcheson P D, Stewart C, Domber J, et al. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[C].In:Space Telescopes & Instrumentation: Optical, Infrared, & Millimeter Wave. International Society for Optics and Photonics, 2012:21. 10.1117/12.925413
    [7] Tandy W, Atcheson P, Domber J, et al. MOIRE gossamer space telescope - structural challenges and solutions[C] In:53rd AIAA/ASME/ASCE/AHS/ASC StructuresStructural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012. 10.2514/6.2012-1670
    [8] Tandy W D, Copp T, Campbell L, et al. MOIRE gossamer space telescope - Membrane analysis[C]. In: Spacecraft Structures Conference. 2014. 10.2514/6.2014-1367
    [9] Domber J L, Atcheson P D, Kommers J . MOIRE: Ground Test Bed Results for a Large Membrane Telescope[C]. In:Spacecraft Structures Conference. 2014. 10.2514/6.2014-1510
    [10] Copp T, Domber J L, Atcheson P D, et al. MOIRE: Membrane material property characterizations, testing and lessons learned[C]. In:Spacecraft Structures Conference. 2014. 10.2514/6.2014-0673
    [11] Atcheson P, Domber J, Whiteaker K, et al. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope[C]. In:Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, 2014, 9143. 10.1117/12.2054104
    [12] Wang D W, Zhi X Y, Zhang W, et al. Influence of ambient temperature on the modulation transfer function of an infrared membrane diffraction optical system [J]. Applied Optics, 2018, 57(30):9096-105. 10.1364/ao.57.009096
    [13] Jiang S, Zhi X, Dong Y, et al. Inversion restoration for space diffractive membrane imaging system[J]. Optics and Lasers in Engineering, 2020, 125(Feb.):105863.1-105863.9. 10.1016/j.optlaseng.2019.105863
    [14] Jiang S, Zhi X, Zhang W D, et al. Global Information Transmission Model-Based Multi objective Image Inversion Restoration Method for Space Diffractive Membrane Imaging Systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-12. 10.1109/tgrs.2021.3083111
    [15] Zhang S, Wang Y, Zhi X. A novel design of membrane mirror with small deformation and imaging performance analysis in infrared system[J]. Infrared Physics & Technology, 2017, 82:170-177. 10.1016/j.infrared.2017.02.016
    [16] Zhang Y, Zheng C, Zhuang Y. Effect of the shadowing in high-numerical-aperture binary phase Fresnel zone plates[J]. Optics Communications, 2014, 317:88-92. 10.1016/j.optcom.2013.10.039
    [17] Xu K K. Monolithically integrated Si gate-controlled light-emitting device: Science and properties[J]. Journal of optics, 2017, 20(2):8. 10.1088/2040-8986/aaa2b7
    [18] Fiete R D, Tantalo T A, Calus J R, et al. Image quality of sparse aperture designs for remote sensing[J]. Optical Engineering, 2002, 41(8):1957-1969. 10.1117/1.1490555
    [19] Buralli D A, Morris G M. Effects of diffraction efficiency on the modulation transfer function of diffractive lenses[J]. Applied Optics, 1992, 31(22):4389-96. 10.1364/ao.31.004389
    [20] Jiang S, Zhi X, Wei Z, et al. Remote sensing image fine-processing method based on the adaptive hyper-Laplacian prior[J]. Optics and Lasers in Engineering, 2021, 136(Jan.):106311-6. 10.1016/j.optlaseng.2020.106311
    [21] Shi S, Prather D W. Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields[J]. Optics Letters, 1999, 24(21):1445-7. 10.1364/ol.24.001445
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛锐泽,乔凯,智喜洋,巩晋南,江世凯,田超.红外合成孔径衍射光学系统成像特性建模与分析[J].红外与毫米波学报,2023,42(2):260~266]. NIU Rui-Ze, QIAO Kai, ZHI Xi-Yang, GONG Jin-Nan, JIANG Shi-Kai, TIAN Chao. Modeling and analysis for imaging characteristics of infrared array-aperture diffractive optical system[J]. J. Infrared Millim. Waves,2023,42(2):260~266.]

复制
分享
文章指标
  • 点击次数:474
  • 下载次数: 1796
  • HTML阅读次数: 114
  • 引用次数: 0
历史
  • 收稿日期:2022-09-21
  • 最后修改日期:2023-03-08
  • 录用日期:2022-10-24
  • 在线发布日期: 2023-03-07
文章二维码