山地坡度自适应星载光子计数激光雷达点云去噪方法
作者:
作者单位:

1.昆明理工大学 理学院,云南 昆明 650500;2.昆明理工大学 云南省高校现代信息光学重点实验室,云南 昆明 650500

作者简介:

通讯作者:

中图分类号:

TP79;TN958.98

基金项目:

云南省人培项目(KKSY201907027),国家自然科学基金(61865007),云南省科技厅重大项目(2019FA025),国家自然基金(62275113)


Spaceborne photon counting lidar point cloud denoising method with the adaptive mountain slope
Author:
Affiliation:

1.School of Science, Kunming University of Science and Technology, Kunming 650500, China;2.Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

Supported by Yunnan Province Talent Training Program (KKSY201907027), National Natural Science Foundation of China (61865007); Yunnan Provincial Science and Technology Department (2019FA025), National Natural Science Foundation of China (62275113)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    星载光子计数激光雷达在接收信号的过程中会产生大量噪声,并且在复杂的山区地形中信噪比低,极大地影响对植被点云信号的准确提取。为解决该问题,提出了一种基于山地坡度的密度聚类算法。通过分析点云数据的密度和森林目标地形特征,用最大密度中心搜索法进行粗去噪,基于点云数据计算坡度角以优化密度聚类,完成数据精去噪。通过对提取的森林区域信号进行分类,拟合植被冠层廓线和地表廓线,结果表明本算法提取植被光子信号的准确率较高,地面与冠层廓线的RMSE分别为0.3588 m和3.7449 m,更适用于植被遥感点云数据处理。

    Abstract:

    A large amount of noise will be generated while spaceborne photon counting LIDAR receive signals, and the signal-to-noise ratio is lower in complex mountainous land, which greatly affects the accurate extraction of vegetation point cloud signals. This paper proposes a density clustering algorithm based on the mountain slope to solve this problem. By analyzing the density of point cloud data and the terrain characteristics of forest targets, coarse noise removal is performed by using the maximum density center search method, and then the slope angle is calculated based on the point cloud data to optimize density clustering and complete the data fine noise removal. By classifying the extracted forest region signal, fitting the vegetation canopy profile and the surface profile, the results show that the proposed algorithm has high accuracy in the extraction of vegetation photon signal, and the RMSE of the ground and canopy profiles are 0.3588 m and 3.7449 m, respectively, which is more suitable for vegetation remote sensing point cloud data processing.

    参考文献
    相似文献
    引证文献
引用本文

何光辉,王虹,方强,张永安,赵丹露,张亚萍.山地坡度自适应星载光子计数激光雷达点云去噪方法[J].红外与毫米波学报,2023,42(2):250~259]. HE Guang-Hui, WANG Hong, FANG Qiang, ZHANG Yong-An, ZHAO Dan-Lu, ZHANG Ya-Ping. Spaceborne photon counting lidar point cloud denoising method with the adaptive mountain slope[J]. J. Infrared Millim. Waves,2023,42(2):250~259.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-06
  • 最后修改日期:2023-03-09
  • 录用日期:2022-10-25
  • 在线发布日期: 2023-03-07
  • 出版日期:
文章二维码