森林火灾微光遥感识别新指数—增强夜光火灾扰动指数
作者:
作者单位:

1.中国气象局沈阳大气环境研究所,辽宁 沈阳110166;2.辽宁省农业气象灾害重点验室, 辽宁 沈阳110166;3.沈阳市气象局,辽宁 沈阳110168;4.沈阳城市建设学院, 辽宁 沈阳110167

作者简介:

通讯作者:

中图分类号:

TP79

基金项目:

沈阳市中青年科技创新人才支持计划(RC210431),风云卫星应用先行计划二期(FY-APP-2021.0302)


A new index for low-light-level remote sensing identification of forest fires: the enhanced noctilucent fire disturbance index
Author:
Affiliation:

1.Shenyang Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China;2.Key Laboratory of Agricultural Meteorological Disasters in Liaoning Province, Shenyang 110166, China;3.Meteorological bureau of Shenyang, Shenyang 110168, China;4.Shenyang Urban Construction University, Shenyang 110167,China

Fund Project:

Supported by the Shenyang young and middle-aged scientific and technological innovation talents support program(RC210431), and Fengyun satellite application advance plan(FY-APP-2021.0302)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着光电技术的发展,低照度条件下的微光成像技术及其应用成为近年来的研究热点之一。在微光遥感影像上,很难单纯依靠辐射亮度或温度,将森林火灾与工业燃烧、城市等热源充分地分离,同时由于频繁的数据饱和问题,目前NPP火灾产品仅提供探测位置信息。因此,为了在各种高亮度异质热源中实现森林火灾识别,进一步推进火灾探测产品像素级表征,基于地表温度通过潜热传递随植被密度的增加而降低的原理,提出了一种新的光谱指数—增强夜光火灾扰动指数(ENFDI),并与传统的中红外波段(Tmir)火灾识别方法进行对比分析。结果表明,ENFDI可以增强森林火灾与城市热源之间的光谱差异,提高微光条件下森林火灾识别能力,森林火灾ENFDI明显高于城市热源区;ENFDI能够有效缓解微光波段易饱和的影响,ENFDI不仅可以明显地分辨出潜在饱和区内火光亮度的差异,增强火灾像元的可区分性,而且与中远红外亮温差的相关性R高达0.94~0.97,明显高于微光波段亮度(NTL)与中远红外亮温差的相关性(0.82~0.83);ENFDI具有一定的稳定性,它不受月相变化的影响,在有无月光情况下夜间森林火灾均被识别;ENFDI森林火灾识别精度(87.66%)高于传统中红外波段(Tmir)火灾识别精度(83.91%),与NPP /VIIRS主动火灾产品(VNP14IMG)具有良好的总体对应关系,定位偏差在628 m以内。因此,ENFDI指数对森林火灾的识别具有敏感性、稳定性和准确性,为进一步实现火灾像素级表征提供可行性参考。

    Abstract:

    With the development of optoelectronic technology, low-light-level (LLL) imaging technology and its application have recently become a research focus. In LLL remote sensing images, it is difficult to completely separate forest fires from industrial combustion and urban heat sources based on radiance or temperature alone. Meanwhile, because of frequent data saturation in the low-light band, the existing fire detection products only provide detection information. To identify forest fires among various heterogeneous heat sources with high brightness and further improve the pixel-level characterization of fire detection products, a new spectral index, the enhanced noctilucent fire disturbance index (ENFDI),is proposed based on the principle that surface temperature decreases with the increasing vegetation density by Latent heat transfer. According to the results, ENFDI enhances the differences in spectral characteristics between forest fires and city lights and improves the ability of forest fire identification under low-light conditions. The forest fires’ ENFDI are significantly higher than those of urban heat sources.Moreover, ENFDI can also effectively relieve the impact caused by LLL band’s proneness to saturation. Not only can ENFDI clearly distinguish flame glow differences within potential saturation zones and enhance the distinguishability of forest fire’s pixels, but the correlation (R) between ENFDI and the mid-and far-infrared brightness temperature difference is as high as 0.94–0.97, which is considerably higher than that of NTL (0.82-0.83).Furthermore, ENFDI is relatively stable —it is not affected by lunar phases in that forest fires at night are identified with or without moonlight. ENFDI recorded an 87.66% forest fire identification accuracy in this study, which is higher than the 83.91% accuracy of the conventional TMIR method. The forest fires identified using the ENFDI show a good overall correspondence with the NPP/VIIRS active fire product (VNP14IMG), with a positional tolerance within 628 m. Therefore, ENFDI is sensitive, stable and accurate for identifying forest fires. Further, it may serve as a feasible reference for achieving further pixel-level characterization of fires.

    参考文献
    相似文献
    引证文献
引用本文

武晋雯,纪瑞鹏,张玉书,孙龙彧,于文颖,冯锐,幸芳.森林火灾微光遥感识别新指数—增强夜光火灾扰动指数[J].红外与毫米波学报,2023,42(2):241~249]. WU Jin-Wen, JI Rui-Peng, ZHANG Yu-Shu, SUN Long-Yu, YU Wen-Ying, FENG Rui, XING Fang. A new index for low-light-level remote sensing identification of forest fires: the enhanced noctilucent fire disturbance index[J]. J. Infrared Millim. Waves,2023,42(2):241~249.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-21
  • 最后修改日期:2023-03-08
  • 录用日期:2022-11-17
  • 在线发布日期: 2023-03-07
  • 出版日期:
文章二维码