设计低对称性全电介质椭圆格点能谷光子晶体
作者:
作者单位:

太原理工大学 物理与光电工程学院,山西 太原 030024

中图分类号:

O43

基金项目:

国家自然科学基金青年科学基金(11704275;11904255)


Design of all-dielectric valley photonic crystals with low symmetry elliptical lattice
Author:
Affiliation:

Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China

Fund Project:

Supported by National Natural Science Foundation of China (11704275,11904255)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    二维拓扑光子绝缘体中格点的对称性作为一个设计的自由度还未被探索。在此研究中通过使用对称性较低的椭圆形格点来研究格点对称性对于能谷光子禁带的影响。通过改变椭圆形格点的长轴方向能够改变能谷光子禁带的中心波长及宽度,并将具有不同禁带宽度及中心波长的全电介质能谷光子晶体结构以镜面对称的方式组合实现全电介质光子拓扑绝缘体波导结构,实现了抗散射鲁棒单向光传输。该研究拓展了能谷光子晶体设计的自由度,为全电介质能谷光子晶体设计提供了新的可能性。

    Abstract:

    The symmetry of lattice points in a two-dimensional topological photonic insulator has not been explored as a design freedom. In this study, the influence of the symmetry of the lattice points on the photonic bandgap of an all-dielectric valley photonic crystal (VPC) structure is analyzed by using elliptical lattice points with lower symmetry. The central wavelength and width of the photonic bandgap of the VPC can be modified by varying the direction of the long axis of the elliptical lattice points. The all-dielectric VPC structures with different bandgap widths and central wavelengths are combined in a mirror-symmetrical manner to form all-dielectric photonic topological insulator waveguides, which achieve anti-scatter robust unidirectional optical transmission. This study adds new degree of freedom and provides new possibilities to all-dielectric VPC designs.

    参考文献
    [1] Zhang M, Wang C, Hu Y W, et al. Electronically programmable photonic molecule[J]. Nature Photonics, 2019,13:36-40. 10.1038/s41566-018-0317-y
    [2] Ni X, Gorlach M A, Alu A, et al. Topological edge states in acoustic Kagome lattices[J]. New Journal of Physics, 2017,19(5):055002. 10.1088/1367-2630/aa6996
    [3] Sun X C, He C, Liu X P,et al. Two-dimensional topological photonic systems[J]. Progress in Quantum Electronics,2017,55:52-73. 10.1016/j.pquantelec.2017.07.004
    [4] Zhu X Y, Gupta S K, Sun X C, et al. Z2 topological edge state in honeycomb lattice of coupled resonant optical waveguides with a flat band[J]. Optics Express, 2018, 26(19):24307. 10.1364/oe.26.024307
    [5] Xiao M, Ma G C, Yang Z Y, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics, 2015, 11(3):240. 10.1038/nphys3228
    [6] Poddubny A, Miroshnichenko A, Slobozhanyuk A, et al. Topological Majorana states in zigzag chains of plasmonic nanoparticles[J]. Acs Photonics, 2014, 1(2):101-105. 10.1021/ph4000949
    [7] Lu L, Fu L, Joannopoulos J D, et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 2013, 7(4):294-299. 10.1038/nphoton.2013.42
    [8] Lu L , Wang Z Y , Ye D X , et al. Experimental observation of Weyl points[J]. Ence, 2015,349:622-624. 10.1126/science.aaa9273
    [9] Chen W J, Xiao M, et.al. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 2016, 7:13038. 10.1038/ncomms13038
    [10] Gao W L, Yang B, Lawrence M , et al. Plasmon Weyl Degeneracies in Magnetized Plasma[J]. Nature Communications, 2016, 7:12435. 10.1038/ncomms12435
    [11] Noh J, Huang S, Leykam D , et al. Experimental observation of optical Weyl points and Fermi arc-like surface states[J]. Nature Physics, 2017,13(6):611-617. 10.1038/nphys4072
    [12] Yang B, Guo Q H, Tremain B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Ence, 2018, 359(6379):1013-1016. 10.1126/science.aaq1221
    [13] Su W P, Schrieffer J R, Heeger A J. Solitons in Polyacetylene[J]. Physical Review Letters, 1979, 42(25):1698-1701. 10.1103/physrevlett.42.1698
    [14] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 2008, 100(1):013904. 10.1103/physrevlett.100.013904
    [15] Wang Z, Chong Y D , Joannopoulos J D , et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 2007, 100(1):013905. 10.1103/physrevlett.100.013905
    [16] Zheng W, Chong Y D, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265):772. 10.1038/nature08293
    [17] Skirlo S A , Lu Ling , Igarashi Y , et al. Experimental observation of large chern numbers in photonic crystals[J]. Physical Review Letters, 2015, 115(25):253901. 10.1103/physrevlett.115.253901
    [18] Cheng X J , Jouvaud C, Ni X , et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator[J]. Nature Materials, 2016, 15(5):542-548. 10.1038/nmat4573
    [19] Nalitov A V, Malpuech G, Tercas H, et al. Spin-orbit coupling and optical spin Hall effect in photonic graphene[J]. Physical Review Letters, 2014, 114(2):026803. 10.1103/physrevlett.114.026803
    [20] Nalitov A V, Malpuech G, Tercas H, et al. Spin-orbit coupling and optical spin Hall effect in photonic graphene[J]. Physical Review Letters, 2015, 114(2):026803. 10.1103/physrevlett.114.026803
    [21] Yang Y T , Xu Y F , Xu T , et al. Visualization of a unidirectional electromagnetic waveguid using topological photonic crystals made of dielectric materials[J]. Physical Review Letters, 2018, 120(21):217401.1-217401.7. 10.1103/physrevlett.120.217401
    [22] Khanikaev A, Hossein Mousavi S, Tse W, et al. Photonic topological insulators[J]. Nature Mater 2013,12:233–239. 10.1038/nmat3520
    [23] He X T , Liang E T , Yuan Jia Jun, et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications. 2018.10:827. 10.1038/s41467-019-08881-z
    [24] Ma T, Shvets G. All-si valley-hall photonic topological insulator[J]. New Journal of Physics, 2016, 18(2):025012. 10.1088/1367-2630/18/2/025012
    [25] Ezawa M. Topological Kirchhoff Law and Bulk-Edge correspondence for Valley-Chern and Spin-Valley-Chern numbers[J]. Physical Review B, 2013, 88(16):3532-3540. 10.1103/physrevb.88.161406
    [26] Chen X D , Dong J W . Valley-protected backscattering suppression in silicon photonic graphene[J]. Physical Review B, 2017, 96: 020202. 10.1103/physrevb.96.020202
    [27] Shalaev M I, Walasik W, Tsukernik A, et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths[J]. Nature Nanotechnology, 2019,14(1):31-34. 10.1038/s41565-018-0297-6
    [28] Zhu H X , Wang T T, Gao J S , et al. Floquet topological insulator in the BHZ model with the polarized optical field[J]. Chin. Phys. Lett,2014, 31(3):34-37. 10.1088/0256-307x/31/3/030503
    [29] YE Fei, SU Gang. Topological insulators[J]. Physica 叶飞,苏刚。拓扑绝缘体及其研究发展, 物理) 2010,39(8): 564-569.
    [30] Poo Y, He C, Xiao C, et.al. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking[J] Entific Reports, 2016,6(1):29380. 10.1038/srep29380
    [31] Jia Z Y, Yang Y T, Ji L Y, et al. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells[J]. Acta Physica Sinica, 2017,66(22): 227802. 10.7498/aps.66.227802
    [32] Ma T, Khanikaev A B, Mousavi S H, et al. Guiding electromagnetic waves around sharp corners: Topologically protected photonic transport in metawaveguides[J]. Physical Review Letters, 2015, 114(12):127401. 10.1103/physrevlett.114.127401
    [33] Yuan H T, Wang X Q, Lian B, et.al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2[J]. Nature Nanotechnology 2014, 9:851-857. 10.1038/nnano.2014.183
    [34] Qiu P P, Liang R, Qiu W B, et.al. Topologically protected edge states in graphene plasmonic crystals[J]. Optics Express, 2017, 25(19):22587. 10.1364/oe.25.022587
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张娅敏,费宏明,林瀚,韩雨辉,张明达,李雪梅,杨毅彪.设计低对称性全电介质椭圆格点能谷光子晶体[J].红外与毫米波学报,2021,40(4):547~553]. ZHANG Ya-Min, FEI Hong-Ming, LIN Han, Han Yu-Hui, ZHANG Ming-Da, LI Xue-Mei, YANG Yi-Biao. Design of all-dielectric valley photonic crystals with low symmetry elliptical lattice[J]. J. Infrared Millim. Waves,2021,40(4):547~553.]

复制
分享
文章指标
  • 点击次数:573
  • 下载次数: 2441
  • HTML阅读次数: 465
  • 引用次数: 0
历史
  • 收稿日期:2020-10-11
  • 最后修改日期:2021-08-12
  • 录用日期:2020-11-26
  • 在线发布日期: 2021-07-30
文章二维码