基于元学习的少样本红外空中目标分类方法
作者:
作者单位:

1.中国科学院红外探测与成像技术重点实验室,上海 200083;2.中国科学院大学,北京 100049;3.中国科学院上海技术物理研究所,上海 200083

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

上海市现场物证重点实验室基金(2017xcwzk08)


Infrared aircraft few-shot classification method based on meta learning
Author:
Affiliation:

1.Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Fund Project:

Supported by Key Laboratory of Shanghai Field Physical Evidence Foundation (2017xcwzk08)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对空中红外目标样本数目不足、细粒度分类精度低等问题,提出一种基于元学习的少样本红外空中目标分类的方法。该方法以元学习为基础,结合多尺度特征融合,在减少计算量的同时有效提取不同分类任务之间的共性,再利用微调策略实现对不同任务的分类。实验证明,此方法在提升mini-ImageNet数据集分类精度的同时可减少约70%的计算量,对仅有少量样本的红外空中目标细粒度分类准确率可达到92.74%。

    Abstract:

    Aiming at the problem of insufficient samples of infrared aircrafts and low accuracy of fine-grained classification, a method of infrared aircraft few-shot classification based on meta learning is proposed. Based on meta learning and combined with multi-scale feature fusion, this method can effectively extract commonness among different classification tasks while reducing computation, and then classify different tasks with fine-tuning. The experiments proved that this method could improve the classification accuracy of mini-ImageNet dataset while reducing the calculation amount by about 70%. The accuracy of fine-grained classification for infrared aircrafts with few samples reached 92.74%.

    参考文献
    相似文献
    引证文献
引用本文

陈瑞敏,刘士建,苗壮,李范鸣.基于元学习的少样本红外空中目标分类方法[J].红外与毫米波学报,2021,40(4):554~560]. CHEN Rui-Min, LIU Shi-Jian, MIAO Zhuang, LI Fan-Ming. Infrared aircraft few-shot classification method based on meta learning[J]. J. Infrared Millim. Waves,2021,40(4):554~560.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-28
  • 最后修改日期:2021-07-29
  • 录用日期:2020-11-18
  • 在线发布日期: 2021-07-28
  • 出版日期:
文章二维码