InAs/GaSb II类超晶格长波红外探测器的表面处理研究
作者:
作者单位:

1.中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083;2.中国科学院大学,北京 100049

中图分类号:

TN304.2;TN305

基金项目:

国家自然科学基金(61974152, 61904183, 62222412, 62004205, 62104237)


Studies on the surface treatment of InAs/GaSb type-II super-lattice long-wave infrared detectors
Author:
Affiliation:

1.Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Science, Beijing 100049, China

Fund Project:

Supported by the National Natural Science Foundation of China (61974152, 61904183, 62222412, 62004205, 62104237)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    开展了InAs / GaSb II类超晶格长波红外探测器的表面处理研究。通过对不同处理工艺形成台面器件的暗电流分析,发现N2O等离子处理结合快速热退火(RTA)的优化工艺能够显著改善长波器件电学性能。对于50%截止波长12.3 μm的长波器件,在液氮温度,-0.05 V偏置下,表面处理后暗电流密度从5.88 ×10-1 A/cm2降低至4.09 ×10-2 A/cm2,零偏下表面电阻率从17.7 Ωcm提高至284.4 Ωcm,有效降低侧壁漏电流。但是该表面处理后的器件在大反偏压下仍有较大的侧壁漏电,这可能是由于高浓度的表面电荷使得大反偏下侧壁存在较高的隧穿电流。通过栅控结构器件的变栅压实验,验证了长波器件存在纯并联电阻及表面隧穿两种主要漏电机制。最后,对表面处理前后的暗电流进行拟合,处理后器件表面电荷浓度为3.72×1011 cm-2

    Abstract:

    In this work, the surface treatment of InAs/GaSb type-II super-lattice long-wavelength infrared detectors is studied. An optimizing process of N2O plasma treatment and rapid thermal annealing was developed, which can improve the performance of long-wavelength detector with λ50% ?cut-off=12.3 μm from 5.88×10-1 A/cm2 to 4.09×10-2 A/cm2 at liquid nitrogen temperature, -0.05 V bias. Through variable area device array characterization, the sidewall leakage current was extracted. Under zero bias, the surface resistivity improved from 17.9 Ωcm to 297.6 Ωcm. However, the sidewall leakage couldn’t be ignored under large inverse bias after optimizing process, where surface charge might induce the surface tunneling current. It is verified by gate-control structure that there are two main leakage mechanisms in long-wave device: pure sidewall parallel resistance and surface tunneling. At last, the surface charge was calculated to be 3.72×1011 cm-2 by IV curve fitting after optimizing process.

    参考文献
    [1] Klipstein P C , Avnon E , Benny Y , et al. Type II Superlattice Infrared Detector Technology at SCD[J]. Journal of Electronic Materials, 2018, 47:5725-5729.
    [2] Hu Wei-Da, Li Qing, Chen Xiao-Shuang, et al. Recent progress on advanced infrared photodetectors. [J]Acta Phys. Sin.,胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器. 物理学报), 2019, 68(12): 120701.
    [3] Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers[J]. Small, 2019, 15(46): 1904396.
    [4] Sai-Halasz G A, Esaki L, Harrison W A. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Physical Review B, 186): 2812 (1978.
    [5] Haddadi A , Chevallier R , Dehzangi A , et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier[J]. Applied Physics Letters, 2017, 110(10):101104.1-101104.4.
    [6] N.Gautam, E.Plis, H.S.Kim, et al. Heterostructure Band Engineering of Type-II InAs/GaSb Superlattice based Longwave Infrared Photodiodes using Unipolar Current Blocking Barriers. Proc. Of SPIE Vol. 7660 (2010) doi:10.1117/12.849889
    [7] Plis E A , Kutty M N , Krishna S . Passivation techniques for InAs/GaSb strained layer superlattice detectors[J]. Laser & Photonics Reviews, 2013, 7(1):45-59.
    [8] Steinshnider, J, Weimer, M, Kaspi, R, et al. Visualizing Interfacial Structure at Non-Common-Atom Heterojunctions with Cross-Sectional Scanning Tunneling Microscopy[J]. Physical Review Letters, 85(14):2953-2956.
    [9] Banerjee Koushik, Ghosh Siddhartha, Plis Elena, et al . Study of Short- and Long-Term Effectiveness of Ammonium Sulfide as Surface Passivation for InAs/GaSb Superlattices Using X-Ray Photoelectron Spectroscopy[J]. Journal of Electronic Materials, 39(10):2210-2214.
    [10] Peng R, Jiao S, Li H, et al. The influence of surface passivation on dark current contributing mechanisms of the InAs/GaSb superlattice[J]. Journal of Electronic Materials, 2016, 45(1): 703-708.
    [11] Plis E.A., Kutty M.N., Myers S., et al. Performance improvement of long-wave infrared InAs/GaSb strained-layer superlattice detectors through sulfur-based passivation[J]. Infrared Physics & Technology, 2011, 54(3):216-219.
    [12] Salihoglu Omer, Muti Abdullah, Kutluer Kutlu, et al. Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al2O3[J]. Journal of Applied Physics, 2012, 111(7):1248.
    [13] Herrera M , Chi M , Bonds M , et al. Atomic scale analysis of the effect of the SiO2 passivation treatment on InAs/GaSb superlattice mesa sidewall[J]. Applied Physics Letters, 2008, 93(9):2545.
    [14] Kim H. S., Plis E., Gautam N., et al . Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation[J]. Applied Physics Letters, 97(14):143512.1-143512.3.
    [15] Hood Andrew, Razeghi Manijeh, Aifer Edward H.,et al . On the performance and surface passivation of type Ⅱ InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared[J]. Applied Physics Letters, 87(15):151113.1-151113.3.
    [16] Bessolov V N , Lebedev M V . Chalcogenide passivation of III–V semiconductor surfaces[J]. Semiconductors, 1998, 32(11):1141-1156.
    [17] Slavnikov V S , Nesmelov N S , Slavnikova M M , et al. Effects of nitriding on surface charge densities in anodic oxide-InAs structures[J]. russian physics journal, 1999, 42(1):125-125.
    [18] Rehm Robert, Walther Martin, Fuchs Frank, et al . Passivation of InAs/(GaIn)Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with Al_xGa_(1-x)As_ySb_(1-y)[J]. Applied Physics Letters, 86(17):173501.1-173501.3.
    [19] Nolde J A , Stine R , Jackson E M , et al. Effect of the oxide-semiconductor interface on the passivation of hybrid type-II superlattice long-wave infrared photodiodes[C]// Spie Opto. International Society for Optics and Photonics, 2011
    [20] Nguyen J, Ting D Z, Hill C J, et al. Dark current analysis of InAs /GaSb superlattice at low temperatures[J]. Infrared Physics and Technology 2009,52: 317-321.
    [21] Vurgaftman I , Meyer J R , Ram-Mohan L R . Band parameters for III–V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11):5815-5875.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔玉容,周易,黄敏,王芳芳,徐志成,许佳佳,陈建新,何力. InAs/GaSb II类超晶格长波红外探测器的表面处理研究[J].红外与毫米波学报,2023,42(1):8~13]. CUI Yu-Rong, ZHOU Yi, HUANG Min, WANG Fang-Fang, XU Zhi-Cheng, XU Jia-Jia, CHEN Jian-Xin, HE Li. Studies on the surface treatment of InAs/GaSb type-II super-lattice long-wave infrared detectors[J]. J. Infrared Millim. Waves,2023,42(1):8~13.]

复制
分享
文章指标
  • 点击次数:560
  • 下载次数: 2579
  • HTML阅读次数: 321
  • 引用次数: 0
历史
  • 收稿日期:2020-07-09
  • 最后修改日期:2023-01-04
  • 录用日期:2020-08-25
  • 在线发布日期: 2023-01-03
  • 出版日期: 2023-02-25
文章二维码