基于全链路仿真的静止轨道毫米波大气探测性能
作者:
作者单位:

1.华中科技大学 电子信息与通信学院,湖北 武汉430074;2.多谱信息处理技术重点实验室,湖北 武汉430074;3.武汉船舶通信研究所,湖北 武汉430074;4.国家卫星气象中心,北京 100081;5.上海航天电子技术研究所,上海,201109

中图分类号:

P407.7

基金项目:

上海航天科技创新基金项目(SAST2019-102)


Performance of geostationary orbit millimeter-wave atmospheric soundings based on end to end simulations
Author:
Affiliation:

1.School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074,China;2.National Key Laboratory of Science & Technology on Multi-spectral Information Processing, Wuhan 430074, China;3.Wuhan Maritime Communication Research Institute, Wuhan 430074, China;4.National Satellite Meteorological Center, Beijing 100081, China;5.Shanghai Aerospace Electronics Technology Institute, Shanghai 201109, China

Fund Project:

Supported by 2019 SAST Foundation. (SAST2019-102)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对我国发展地球静止轨道(GEO)毫米波大气探测技术的迫切需求与实践空白,采用我国候选的GEO实孔径辐射计载荷方案,开展了从50~425 GHz频段观测亮温模拟正演到大气温湿廓线反演的全链路GEO被动毫米波大气探测仿真实验研究,对台风场景下GEO观测亮温精度和探测大气温湿廓线精度及其影响因素进行了定量分析与评估。结果表明,辐射计载荷的两个关键要素——天线波束宽度和噪声——对不同频率通道亮温精度的影响程度有较大差异;在当前的GEO辐射计载荷指标下,静止轨道毫米波大气温湿廓线探测精度与极轨相当;GEO新增的380 GHz和425 GHz太赫兹探测频段以及BG亮温重建算法都能够有效提升大气温湿廓线的探测精度。以上研究可为我国静止轨道毫米波大气探测载荷设计与应用提供理论依据和科学指导。

    Abstract:

    Aiming for development of geostationary orbit (GEO) millimeter-wave atmospheric sounding technology, the sophisticated end-to-end simulation experiments based on the candidate real-aperture radiometer schemes for China future GEO atmospheric sounding mission, including 50~425 GHz observation brightness temperatures forward and atmospheric profiles retrieval, are conducted to quantitatively examine the accuracy of GEO observation brightness temperature and the estimated atmospheric temperature and humidity profiles under the tropical cyclone conditions in this paper. Then the various factors affecting the accuracy are analyzed. The results show that the two major factors of the radiometer, the antenna beam width and the system noise, play the difference roles in the reduced accuracy of GEO observed brightness temperature for each frequency channel. The accuracy of the retrieval atmospheric temperature and humidity profiles from GEO sounding simulation is comparable to that of the polar orbit. And the contrast results of the retrieval profiles with and without 380 GHz and 425 GHz bands indicate that the accuracy of retrieval profiles can be improved effectively by the new terahertz bands of GEO atmospheric sounding. In additional, BG reconstruction algorithm can also decrease the retrieval errors. The above research can provide scientific basis and technical support for the development decision maker of GEO millimeter-wave atmosphere sounding research.

    参考文献
    [1] Li-Qing LYU, XU Hong-Xin, LUAN Ying-Hong. Development and prospect of integrated microwave imaging detection technology[J]. Aerospace Shanghai(吕利清, 徐红新, 栾英宏. 一体化微波成像探测技术发展和展望. 上海航天), 2017 ,34(1):1-10
    [2] CHEN Wen-Xin, LI Hao, Rong-Chuan LYU, et al. Synchronous orbit microwave remote sensing technology[J]. Space Electronic Technology(陈文新, 李浩, 吕容川, 等. 同步轨道微波遥感技术. 空间电子技术, 2014 , 1:35-39.
    [3] Bizzarri B, Gasiewski A, Staelin D. Initiatives for Mw/Sub-Mm sounding from geostationary orbit [C]. IEEE International Geoscience and Remote Sensing SymposiumToronto, 2002:548-552.
    [4] Solman F, Staelin D, Kerekes J, et al. A microwave instrument for temperature and humidity sounding from geosynchronous orbit[C]. IEEE International Geoscience and Remote Sensing SymposiumSeattle, 1998: 1704-1707.
    [5] Staelin D H, Rosenkranz P W. Applications review panel: High resolution passive microwave satellites[R]. Report for NASA contract NAS5-23677.Cambridge,MA:MIT Press,1978.
    [6] Gasiewski A J, Voronovich A, Weber B L, et al. Geosynchronous microwave (GEM) sounder/imager observation system simulation[J]. Proceedings of IGARSS, IEEE, 2003, 3:1209-1211.
    [7] Bizzarri B. Requirements and perspectives for MW/Sub-MM sounding from geostationary satellite[C]//Proceedings of the 2002 EUMETSAT Meteorological Satellite Conference. Darm-stadt: EUMETSAT, 2002: 97-105.
    [8] Lambrigtsen B, Tanner A, Gaier T, et al. Prototyping a new earth observing sensor- GeoSTAR[C]. Proceedings of the 2007 IEEE Aerospace Conference. New York: IEEE, 2007: 1-9.
    [9] Christensen J , Carlstrom A , Ekstrom H , et al. GAS: The Geostationary Atmospheric Sounder[C]. IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2007.
    [10] Liu H, Wu J, Zhang S, et al. Conceptual Design and Breadboarding Activities of Geostationary Interferometric microwave sounder (GIMS)[C]. IEEE International Geoscience & Remote Sensing SymposiumIGARSS 2009, July 12-17, 2009, University of Cape Town, Cape Town, South Africa, Proceedings. IEEE, 2009.
    [11] XIE Zhen-Chao, LI Xiu-Wei, YAO Chong-Bin, et al. Research on geostationary orbit microwave radiometer technology[J]. Aerospace Shanghai谢振超, 李秀伟, 姚崇斌, 等. 地球静止轨道微波辐射计技术. 上海航天, 2018,35(02):20-28.
    [12] XIE Zhen-Chao, XU Hong-Xin, AN Da-Wei, et al. Remote sensing technology of experimental radiometer in geostationary orbit[J]. Aerospace Shanghai谢振超, 徐红新, 安大伟, 等. 微波辐射计静止轨道遥感试验技术. 上海航天, 2018, 35(02):49-59.
    [13] Yin X B, Zhou W, Lin M S, et al. End to end study of the Chinese salinity mission [C]. IEEE International Geoscience and Remote Sensing SymposiumFort Worth, 2017, 3544-3547.
    [14] JIN Meng-Tong, LIU Hao, WU Lin, et al. Simulation of marine salinity detection tasks and analysis of external error sources on satellite-borne one-dimensional synthetic aperture microwave radiometer[J]. Remote Sensing Technology and Application(金梦彤, 刘浩, 武林, 等. 星载一维综合孔径微波辐射计海洋盐度探测任务仿真及外部误差源分析. 遥感技术与应用),2017 ,32 (2):346-355.
    [15] YU Zhao-Wen, LIU Jian-Wen, HUANG Jiang-Ping, et al. Effect of assimilation of microwave data from AMSR2 on rainstorm prediction of WRF model[J]. Meteorological Disasters Prevention(俞兆文, 刘健文, 黄江平, 等. 同化AMSR2 微波成像资料对WRF 模式暴雨预报的影响. 气象灾害防御),2017 ,24(3):10-14.
    [16] Voronovich A, Gasiewski A, Weber B. A fast multistream scattering-based Jacobian for microwave radiance assimilation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1749-1761.
    [17] Liebe H. MPM-An atmospheric millimeter-wave propagation model [J]. international journal of infrared and millimeter waves, 1989, 10(6):631-650.
    [18] Janssen M. Atmospheric remote sensing by microwave radiometry [M]. New York: John Wiley & Sons, 1993: Ch3. Microwave radiative transfer in hydrometeors.
    [19] Limaye A, Crosson C, Laymon C, et al. Estimating accuracy in optimal deconvolution of synthetic AMSR-E observations [J]. Remote Sensing of Environment, 2006, 100(1):133-142.
    [20] Backus G E, Gilbert J F. Numerical applications of a formalism for geophysical inverse problems[J]. Geophys. J.Int. 1967, 13:247-276.
    [21] Backus G, Gilbert F. The resolving power of gross earth data[J]. Geophysical Journal of the Royal Astronomical Society, 1968, 16(2):169-205.
    [22] Backus G, Gilbert F. Uniqueness in the inversi on of inaccurate gross earth data [ J]. Phil. Trans. Roy. Soc. London A, 1970, 266(1173):123-192.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈柯,郑照明,蔡保国,安大伟,谢振超,李泽宇.基于全链路仿真的静止轨道毫米波大气探测性能[J].红外与毫米波学报,2021,40(2):230~242]. CHEN Ke, ZHENG Zhao-Ming, CAI Bao-Guo, AN Da-Wei, XIE Zhen-Chao, YI Ze-Yu. Performance of geostationary orbit millimeter-wave atmospheric soundings based on end to end simulations[J]. J. Infrared Millim. Waves,2021,40(2):230~242.]

复制
分享
文章指标
  • 点击次数:607
  • 下载次数: 2576
  • HTML阅读次数: 554
  • 引用次数: 0
历史
  • 收稿日期:2020-05-23
  • 最后修改日期:2021-03-31
  • 录用日期:2020-07-21
  • 在线发布日期: 2021-03-30
文章二维码