一种新型基于利用全色锐化技术的插值高光谱图像亚像元定位
作者:
作者单位:

1.南京航空航天大学电子信息工程学院,江苏 南京 210016;2.中国地质大学(武汉)智能地学信息处理湖北省重点实验室,湖北 武汉 430074;3.湖北大学区域开发与环境响应湖北省重点实验室,湖北 武汉 430062

作者简介:

通讯作者:

中图分类号:

O43

基金项目:


A novel interpolation-based subpixel mapping for hyperspectral image by using pansharpening
Author:
Affiliation:

1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China;3.Hubei Key Laboratory of Regional Development and Environment Response, Hubei University, Wuhan 430062, China

Fund Project:

Supported by the National Natural Science Foundation of China (6180121, 61871218); Hubei Key Laboratory of Regional Development and Environment Response Fundamental (2020(B)004); Hubei Key Laboratory of Intelligent Geo-Information Processing (KLIGIP-2019A05); State Key Laboratory of Geo-Information Engineering (SKLGIE2019-M-3-4); Fundamental Research Funds for the Central Universities (NZ2020009)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用全色锐化技术提出了一种新型基于插值的高光谱图像亚像元定位方法。在该方法中,在现有的基于插值的亚像元定位方法处理路径中加入一条新的处理路径。首先,在新的处理路径中利用全色锐化技术对原始粗高光谱图像的空间分辨率进行改进,通过对改进后的图像进行光谱解混得到新型精细丰度图像。其次,将新路径下产生的新型精细丰度图像与现有路径下的精细丰度图像进行融合,得到具有更多空间-光谱信息的更精细丰度图像。最后,根据更细分数图像的预测值,类别分配方法给每个亚像元分配类标签,得到最终的定位结果。实验结果表明,该方法比现有的基于插值的亚像元定位方法产生具有更高的定位精度。

    Abstract:

    In this paper, a novel interpolation-based subpixel mapping (ISPM) for hyperspectral image by using pansharpening (PAN-ISPM) is proposed. In the proposed method, a novel processing path is added into the existing processing path of ISPM. Firstly, the original coarse hyperspectral image is improved by pansharpening technique in the novel processing path, and the novel fine fraction images are derived by unmixing the improved image. Secondly, the novel fine fraction images from the novel path and the existing fine fraction images from the existing path are integrated to produce the finer fraction images with more spatial-spectral information. Finally, according to the predicted values from the finer fraction images, class labels are allocated into subpixel to obtain the final mapping result. Experimental results show that the proposed method produces the higher mapping accuracy than the existing ISPM methods.

    参考文献
    相似文献
    引证文献
引用本文

王鹏,姚红雨,张弓.一种新型基于利用全色锐化技术的插值高光谱图像亚像元定位[J].红外与毫米波学报,2021,40(1):56~63]. WANG Peng, YAO Hong-Yu, ZHANG Gong. A novel interpolation-based subpixel mapping for hyperspectral image by using pansharpening[J]. J. Infrared Millim. Waves,2021,40(1):56~63.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-23
  • 最后修改日期:2021-01-07
  • 录用日期:2020-09-10
  • 在线发布日期: 2021-01-06
  • 出版日期:
文章二维码