方向自适应的星载光子计数激光测高植被冠层高度估算
作者:
作者单位:

武汉大学电子信息学院,激光遥感与光电检测实验室湖北 武汉 430072

中图分类号:

TP79,TN958.98

基金项目:

中央高校基本科研专项资金资助 2042018kf1009中央高校基本科研专项资金资助 (2042018kf1009)


An adaptive directional model for estimating vegetation canopy height using space-borne photon counting laser altimetry data
Author:
Affiliation:

School of Electronic Information, Wuhan University, Wuhan 430072, China

Fund Project:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    星载光子计数激光测高系统具有较高的沿轨距离分辨率,能够探测得到植被冠层和地表的连续高程信息。然而星载植被点云的低点云密度和低信噪比,对植被相对冠层高度的估算方法提出了新的要求。本文提出了一种方向自适应的星载光子计数激光测高植被点云冠高估算方法。首先通过寻找点云高程统计直方图中代表冠层和地面位置的极值进行粗去噪,大致得到信号高程所在的范围,并估算出冠层,地面和噪声点云的平均密度以及地表坡度。随后对粗去噪后的点云进行方向自适应的密度聚类精去噪,其邻域的方向为地表坡度,与密度有关的阈值均根据估算出的点云密度自适应的做出调整。在滤波后,结合点云的密度和高程百分比分别找出地面与树冠顶端的初始点,并通过三角网方法(TIN)扩展初始点以进行分类,最终确定地表与树冠顶端的高程。采用ATLAS星载激光测高仪的植被点云对算法进行了验证,结果表明算法能够正确估算植被冠高,十分适用于坡度较大和叶面积指数较低的地区,其中冠顶与地面的高程和机载LIDAR数据高程的决定系数R2分别为0.99与0.77,均方根误差RMSE为0.28 m与2.6 m。

    Abstract:

    The space-borne photon counting laser altimetry can detect continuous elevations of vegetation canopy and earth surface for its high along-orbit resolution. However, the relatively low point cloud density and low signal-to-noise ratio (SNR) of space-borne vegetation point clouds put forward new requirements for estimating vegetation canopy heights. In this paper, an adaptive directional model for estimating vegetation canopy heights using space-borne vegetation point clouds was proposed to meet the new requirements. Firstly, the range of signal elevation was roughly obtained by searching two extremums that represent the crown and ground in the statistical histogram of point cloud elevation. The land slope and average densities of crown, ground and noise were estimated as well. Then, the roughly denoised point clouds were further fine denoised by adaptive directional density-based clustering where the direction of neighborhood is along the land surface, and the thresholds related to density are adjusted adaptively according to the estimated point cloud densities. After filtering, the elevations of ground and canopy were estimated respectively by applying triangular irregular networks (TIN) where the initial points of ground and canopy in TIN were found by the densities and elevation percentage of point clouds. Vegetation point clouds of ATLAS space-borne laser altimeter are used to validate the filtering method. The experimental results show that the adaptive directional model can correctly estimate vegetation canopy heights and is fit for areas with large slope and low leaf area index. The determination coefficients R2 of canopy and ground elevation between processed ATLAS data and airborne LIDAR data are 0.99 and 0.77 respectively, and RMSE are 0.28 M and 2.6 m.

    参考文献
    [1] Richardson J J , Moskal L M , Kim S H . Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR[J]. Agricultural and Forest Meteorology, 2009, 149(6-7):0-1160.
    [2] Lim K , Treitz P , Baldwin K , et al. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests[J]. Canadian Journal of Remote Sensing, 2003, 29(5):658-678.
    [3] Morsdorf F , K.Tz B , Meier E , et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1):50-61.
    [4] Neeck S. P. (2010). Ice, Clouds and Land Elevation (ICESat-2) Mission.
    [5] Markus T., Neumann T., Martino A., Abdalati W., Brunt K., & Csatho B., et al. (2017). The ice, cloud, and land elevation satellite-2 (icesat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273.
    [6] Martino A. (2017-4-17). ATLAS Performance spreadsheet. https://icesat-2.gsfc.nasa.gov/legacy-data/sigma/sigma_data.php.
    [7] Markus T , Neumann T , Martino A , et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273.
    [8] Degnan J. J. (2002). Photon-counting multikilohertz microlaser altimeters for airborne and space-borne topographic measurements. Journal of Geodynamics, 34(3), 503-549.
    [9] Moussavi M S, Abdalati W, Scambos T, et al. Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: implications for canopy height retrieval from future ICESat-2 data[J]. International Journal of Remote Sensing, 2014, 35(13):5263-5279.
    [10] Nie S, Wang C, Xi X, et al. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.[J]. Optics Express, 2018, 26(10):A520.
    [11] Kwok R., Markus T., Morison J., Palm S. P., Neumann T. A., & Brunt K. M., et al. (2014). Profiling sea ice with a multiple altimeter beam experimental lidar (mabel). Journal of Atmospheric & Oceanic Technology, 31(5), 1151-1168.
    [12] Brenner A C, Barbieri K, Markus T, et al. ICESat-2 Simulations and Analysis using Sigma Space MPL Measurements over Greenland[C]// Agu Fall Meeting. 2010.
    [13] Awadallah M, Ghannam S, Abbott L, et al. A two-stage algorithm for extraction of ground and top of canopy in photon-counting profiling-LiDAR data in preparation for the ICESat-2 mission[C]// Geoscience and Remote Sensing Symposium. IEEE, 2014:1353-1356.
    [14] Herzfeld U C , Mcdonald B W , Wallin B F , et al. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4):2109-2125.
    [15] XIE Feng,YANG Gui,SHU Rong,LI Ming.An adaptive directional filter for photon counting Lidar point cloud data[J].J.Infrared Millim.Waves(谢锋, 杨贵, 舒嵘, 等. 方向自适应的光子计数激光雷达滤波方法. 红外与毫米波学报), 2017,36(1):107-113.
    [16] Neuenschwander A , Pitts K . The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 2019, 221:247-259.
    [17] Amy L. Neuenschwander ,Lori A. Magruder. Canopy and Terrain Height Retrievals with ICESat-2: A First Look[J]. Remote Sens. 2019, 11, 1721; doi:10.3390/rs11141721
    [18] Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[J]. International Archives of Photogrammetry & Remote Sensing, 2000, 33.
    [19] Popescu S C, Zhou T, Nelson R, et al. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data[J]. Remote Sensing of Environment, 2018, 208:154-170.
    [20] Liu P , Zhou D , Wu N . VDBSCAN: Varied Density Based Spatial Clustering of Applications with Noise[C]// Service Systems and Service Management, 2007 International Conference on. IEEE, 2007.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王玥,李松,田昕,张智宇,张文豪.方向自适应的星载光子计数激光测高植被冠层高度估算[J].红外与毫米波学报,2020,39(3):363~371]. WANG Yue, LI Song, TIAN Xin, ZHANG Zhi-Yu, ZHANG Wen-Hao. An adaptive directional model for estimating vegetation canopy height using space-borne photon counting laser altimetry data[J]. J. Infrared Millim. Waves,2020,39(3):363~371.]

复制
分享
文章指标
  • 点击次数:1483
  • 下载次数: 4830
  • HTML阅读次数: 890
  • 引用次数: 0
历史
  • 收稿日期:2019-10-28
  • 最后修改日期:2020-04-16
  • 录用日期:2019-11-19
  • 在线发布日期: 2020-04-16
文章二维码