融合高分夜光和Landsat OLI影像的不透水面自动提取方法
作者:
作者单位:

1.南京大学 地理与海洋科学学院江苏 南京 210023;2.江苏省地理信息技术重点实验室江苏 南京 210023;3.自然资源部 国土卫星遥感应用重点实验室江苏 南京 210023;4.中南大学 地球科学与信息物理学院湖南 长沙 410083

中图分类号:

TP 79

基金项目:

国家自然科学基金重点项目 41631176国家自然科学基金重点项目(41631176)


An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images
Author:
  • TANG Peng-Fei 1,2,3

    TANG Peng-Fei

    School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023,China;Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MIAO Ze-Lang 4

    MIAO Ze-Lang

    School of Geoscience and Info-Physics, Central South University, Changsha 410083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Cong 1,2,3

    LIN Cong

    School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023,China;Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DU Pei-Jun 1,2,3

    DU Pei-Jun

    School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023,China;Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Shan-Chuan 1,2,3

    GUO Shan-Chuan

    School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023,China;Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023,China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China;2.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023,China;3.Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023,China;4.School of Geoscience and Info-Physics, Central South University, Changsha 410083, China

Fund Project:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对监督分类提取不透水面需要人工获取大量训练样本的制约,提出了一种亚米级高空间分辨率夜光遥感影像引导下的不透水面自动提取方法。以夜光强度信息作为先验知识,判别对应地理位置的Landsat8 OLI影像像元为不透水面正负训练样本后,提取OLI影像的光谱和纹理特征构建特征集,利用集成ELM分类器提取不透水面。选择全球4个具有代表性的城市作为试验区进行验证,结果显示,该方法在4个试验区的不透水面提取精度均超过93%,Kappa系数均在0.87以上。对比BCI指数与人工选取训练样本的不透水面提取结果,发现该方法在4个试验区的总体精度均优于指数法,主要原因是该方法相较于BCI指数法可以更有效地区分裸土和不透水面。提出的自动提取方法在3个试验区的总体精度高于或接近人工样本分类方法,但在哈尔滨试验区的总体精度略低,主要是因为在自动选择样本过程中灯光强度弱的不透水面未被选为正样本导致部分漏提。研究表明,高分辨率夜光数据可以作用遥感影像解译与地物提取的先验知识,引导自动分类提取模型的构建,具有较高的实用性。

    Abstract:

    Supervised classification is a vital approach to extract impervious surface areas (ISA) from satellite images, but the training samples need to be provided through heavy manual work. To address it, this study proposed an automatic method to generate training samples from high-resolution night light data, considering that nighttime lights generated by human activities is strongly correlated with impervious surface. First, positive and negative samples for ISA were located according to the distribution of nighttime lights. Second, the feature sets were constructed by calculating the spectral and texture feature from the OLI images. Third, an ensemble ELM classifier was selected for ISA classification and extraction. Four large cities were selected as study areas to examine the performance of the proposed method in different environment. The results show that the proposed method can automatically and accurately acquire ISA with an overall accuracy higher than 93% and Kappa coefficient higher than 0.87. Furthermore, comparative experiments by biophysical composition index (BCI)and classification by manual sample were conducted to evaluate its superiority. The results show that our method has better separability for ISA and soil than the BCI. In general, the proposed method is superior to manual methods, except Harbin mostly because some impervious surfaces with weak light intensity are selected as negative samples.

    参考文献
    [1] Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends [J]. Remote Sensing of Environment, 2012, 117: 34-49.
    [2] Liu Z., He C., Zhang Q., Huang, et al. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008 [J]. Landscape and Urban Planning, 2012, 106:62–72.
    [3] Arnold, Gibbons C. L. and C. J.. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator [J]. Journal of the American Planning Association, 1996, 62(2):243-258.
    [4] Weng Q. Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS [J]. Environmental Management, 2014, 28(6): 737-748.
    [5] Hurd J D, Civco D L. Temporal characterization of impervious surfaces for the State of Connecticut[C]//ASPRS Annual Conference Proceedings, Denver, Colorado. 2004.
    [6] Brun S. E., Band L. E. Simulating runoff behavior in an urbanizing watershed [J]. Computers, Environment and Urban Systems, 2000, 24:5–22.
    [7] Yang L., Huang C., Homer C. G., et al. An approach for mapping large-scale impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery [J]. Canadian Journal of Remote Sensing, 2003, 29:230–240.
    [8] Yuan F, Bauer M. E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery [J]. Remote Sensing of Environment, 2007, 106:375–386.
    [9] Xu H, Wang M. Remote sensing-based retrieval of ground impervious surfaces [J]. Journal of Remote Sensing (徐涵秋,王美雅.地表不透水面信息遥感的主要方法分析.遥感学报), 2016, 20(5):1270-89
    [10] Gillies R. R., Box J. B., et al. Effects of urbanization on the aquatic fauna of the Line Creek watershed, Atlanta — A satellite perspective [J]. Remote Sensing of Environment, 2003, 86:411–422.
    [11] Carlson T. N. Analysis and prediction of surface run off in an urbanizing watershed using satellite imagery [J]. Journal of the American Water Resources Association, 2004,40(4):1087–1098.
    [12] Boegh E., Poulsen R. N., Butts M. , et al. Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale [J]. Journal of Hydrology, 2009, 377(3–4):300–316.
    [13] Carlson T N and Arthur S T The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective [J]. Global and Planetary Change, 2000, 25(1/2): 49-65.
    [14] Zha Y., et al. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery [J]. International Journal of Remote Sensing, 2003, 24(3): 583-594.
    [15] Xu H Q. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI) [J]. Photogrammetric Engineering and Remote Sensing, 2010, 76(5): 557-565.
    [16] Deng C B and Wu C S. BCI: a biophysical composition index for remote sensing of urban environments [J]. Remote Sensing of Environment, 2012,127: 247-259.
    [17] Li C, Wang J, Wang L, et al. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery [J]. Remote sensing, 2014.6(2):964-983.
    [18] Rodriguez-Galiano V. F., et al. An assessment of the effectiveness of a random forest classifier for land-cover classification [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93-104.
    [19] Bulut, Gunlu S. and A.. Comparison of Different Supervised Classification Algorithms for Land Use Classes [J]. Kastamonu University Journal of Forestry Faculty, 2016, 16(2): 528-535.
    [20] Sutton P., et al. Census from Heaven: An estimate of the global human population using night-time satellite imagery [J]. International Journal of Remote Sensing, 2001, 22(16): 3061-3076.
    [21] Xie Y., et al. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States 2013–2017 [J]. Remote Sensing of Environment, 2019, 225: 160-174.
    [22] Ou J., et al. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 1-12.
    [23] Zhang Q. L., et al. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery [J]. Remote Sensing, 2015, 7(9): 11887-11913.
    [24] Cheng X, Wu W, Xia L, et al. Automatic Extraction Method for Impervious Surface Area by Integrating Nighttime light Data and Landsat TM Images [J].Journal of Geo-Information Science 程熙, 吴炜, 夏列钢, 等. 集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究.地球信息科学学报, 2017, 19(10):1364-74.
    [25] Ma X., et al. Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas [J]. Remote Sensing, 2017, 9(3): 236.
    [26] Zhang, Li X. and P.. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 93-111.
    [27] Kuang W, Mapping global impervious surface area and green space within urban environments [J]. In Journal of SCIENTIA SINICA Terrae (匡文慧.全球城市人居环境不透水面与绿地空间特征制图.中国科学:地球科学), 2019, 49(07):1151-1168.
    [28] Du M., et al. Modeling the Census Tract Level Housing Vacancy Rate with the Jilin1-03 Satellite and Other Geospatial Data [J]. Remote Sensing, 2018, 10(12).
    [29] Elvidge D. C., et al. Automatic Boat Identification System for VIIRS Low Light Imaging Data [J]. Remote Sensing, 2015, 7(3).
    [30] Grundland, Dodgson M. and N. A.. Decolorize: Fast, contrast enhancing, color to grayscale conversion [J]. Pattern Recognition, 2007, 40(11): 2891-2896.
    [31] Elvidge C.D., Baugh K.E., Zhizhin M., et al. Why VIIRS data are superior to DMSP for mapping nighttime lights [J]. Proc. Asia Pac. Adv. Netw, 2013, 35 (0): 62.
    [32] Zheng Q., et al. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B [J]. Remote Sensing of Environment, 2018, 215: 300-312.
    [33] Ohtsu N. A Threshold Selection Method from Gray-Level Histograms [J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1):62-66.
    [34] Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//2004 IEEE International Joint Conference on Neural Networks.Budapest,Hungary:IEEE, 2004:985-990.
    [35] Guang-Bin Huang, Qin-Yu Zhu, Siew Chee-Kheong. Extreme learning machine: Theory and applications [J]. Neurocomputing, 2005, 70(1).
    [36] Stumpf A. Kerle N. Object-oriented mapping of landslides using Random Forests [J]. Remote Sensing of Environment, 2011, 115(10): 2564-2577.
    [37] Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: a new classifier ensemble method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1619-1630.
    [38] Gong P. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J]. International Journal of Remote Sensing, 2013, 34(7): 2607-2654.
    [39] Han M, Liu B. An Improved Rotation Forest Classification Algorithm [J]. Journal of Electronics & Information Technology (韩敏,刘贲.一种改进的旋转森林分类算法.电子与信息学报), 2013, 35(12):2896-900.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐鹏飞,苗则朗,林聪,杜培军,郭山川.融合高分夜光和Landsat OLI影像的不透水面自动提取方法[J].红外与毫米波学报,2020,39(1):128~136]. TANG Peng-Fei, MIAO Ze-Lang, LIN Cong, DU Pei-Jun, GUO Shan-Chuan. An automatic method for impervious surface area extraction by fusing high-resolution night light and Landsat OLI images[J]. J. Infrared Millim. Waves,2020,39(1):128~136.]

复制
分享
文章指标
  • 点击次数:1342
  • 下载次数: 2339
  • HTML阅读次数: 996
  • 引用次数: 0
历史
  • 收稿日期:2019-08-16
  • 最后修改日期:2019-12-19
  • 录用日期:2019-09-16
  • 在线发布日期: 2020-01-07
文章二维码