基于65 nm标准CMOS工艺的3.0 THz 探测器
作者:
作者单位:

1.中国科学院半导体研究所 半导体超晶格国家重点实验室北京 100083;2.中国科学院半导体研究所 半导体材料科学重点实验室北京 100083;3.中国科学院大学 材料与光电研究中心北京 100049

中图分类号:

TN386.1

基金项目:

国家重点研发计划资助 2016YFA0202200;中国科学院青年创新促进会计划 2016107;北京市科技计划项目 Z181100008918009国家重点研发计划资助(2016YFA0202200),中国科学院青年创新促进会计划(2016107),北京市科技计划项目(Z181100008918009).


A 3.0 THz detector in 65 nm standard CMOS process
Author:
  • FANG Tong 1,3

    FANG Tong

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Li-Yuan 1,3

    LIU Li-Yuan

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Zhao-Yang 1,3

    LIU Zhao-Yang

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FENG Peng 1,3

    FENG Peng

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yuan-Yuan 2,3

    LI Yuan-Yuan

    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Jun-Qi 2,3

    LIU Jun-Qi

    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Jian 1,3

    LIU Jian

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Nan-Jian 1,3

    WU Nan-Jian

    State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;2.Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    基于Dyakonov和Shur等离子体波振荡原理设计并流片制备了一种采用65 nm 标准CMOS工艺的3.0 THz探测器,探测器包括贴片天线、NMOS场效应晶体管、匹配网络及陷波滤波器。探测器在室温条件下可达到526 V/W的响应率(Rv)和73 pW/Hz1/2的噪声等效功率(NEP)。采用该探测器和步进电机搭建了太赫兹扫描成像系统,获得了太赫兹源出射光斑的远场形状,光斑的半高宽(FWHM)为240;并对聚甲醛牙签和树叶进行了扫描成像实验,结果表明CMOS太赫兹探测器在成像领域有潜在的应用前景。

    Abstract:

    A 3.0 THz detector based on plasma-wave theory proposed by Dyakonov and Shur was designed and fabricated in 65 nm standard CMOS process, the detector consists of a patch antenna, a NMOS field effect transistor, a matching network, and a notch filter, it can achieve a room-temperature responsivity (Rv) of 526 V/W and a noise equivalent power (NEP) of 73 pW/Hz1/2. The terahertz scanning imaging system was built with the detector and stepper motor, and the far-field shape of the terahertz source beam was obtained, the full width at half maximum (FWHM) of the beam is 240 μm; and the image of the polyformaldehyde toothpick and tree leaf were obtained through the scanning imaging system, it shows that CMOS terahertz detectors have potential applications in the imaging field.

    参考文献
    [1] Woolard D L, Jensen J O, Hwu R J. Terahertz science and technology for military and security applications [M]. world scientific, 2007.
    [2] Cassar Q, Al-Ibadi A, Mavarani L, et al. Pilot study of freshly excised breast tissue response in the 300–600 GHz range[J]. Biomedical optics express, 2018, 9(7): 2930-2942.
    [3] Hoshina H, Sasaki Y, Hayashi A, et al. Noninvasive mail inspection system with terahertz radiation [J]. Applied spectroscopy, 2009, 63(1): 81-86.
    [4] Hosako I, Oda N. Terahertz imaging for detection or diagnosis [J]. SPIE Newsroom, 2011, 102.1201105: 003651.
    [5] Lee Y S. Principles of terahertz science and technology [M]. Springer Science & Business Media, 2009.
    [6] Kreisler A J, Gaugue A. Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range[J]. Superconductor Science and Technology, 2000, 13(8): 1235.
    [7] Golay detector datasheet for GC-1with HDPE window P, Inc Tydex, accessed on Mar. 2019. [Online]. Available:http://www.tydexoptics.com/products/thz_devices/golay_cell/
    [8] Liu Z, Liu L, Yang J, et al. A CMOS fully integrated 860-GHz terahertz sensor [J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(4): 455-465.
    [9] Dyakonov M I, Shur M S. Plasma wave electronics: novel terahertz devices using two dimensional electron fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1640-1645.
    [10] Knap W, Kachorovskii V, Deng Y, et al. Nonresonant detection of terahertz radiation in field effect transistors [J]. Journal of Applied Physics, 2002, 91(11): 9346-9353.
    [11] Knap W, Teppe F, Meziani Y, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors [J]. Applied Physics Letters, 2004, 85(4): 675-677.
    [12] Ojefors E, Pfeiffer U R, Lisauskas A, et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology [J]. IEEE Journal of Solid-State Circuits, 2009, 44(7): 1968-1976.
    [13] Al Hadi R, Sherry H, Grzyb J, et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2012, 47(12): 2999-3012.
    [14] Fang T, Dou R, Liu L, et al. A 25 fps 32× 24 Digital CMOS Terahertz Image Sensor[C]. IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2018: 87-90.
    [15] International Telecommunication Union ITU-R P.676-11: Attenuation by Atmospheric Gases (ITU, 2016.
    [16] The HITRAN Database. accessed on Mar. 2019. [Online]. Available:http://www.cfa.harvard.edu/hitran/
    [17] Fang T, Liu Z, Liu L, et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process[C]. IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2017: 189-192.
    [18] Gutin A, Kachorovskii V, Muraviev A, & Shur M. Plasmonic terahertz detector response at high intensities[J]. Journal of Applied Physics, 2012, 112(1): 014508.
    [19] Khmyrova I, Seijyou Y. Analysis of plasma oscillations in high-electron mobility transistorlike structures: Distributed circuit approach[J]. Applied Physics Letters, 2007, 91(14): 143515.
    [20] Lisauskas A, Pfeiffer U, ?jefors E, et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors[J]. Journal of Applied Physics, 2009, 105(11): 114511.
    [21] Razavi B. Design of Analog CMOS Integrated Circuits[M]. Xi''''an Jiaotong University Press(毕查德, 拉扎维, 陈贵灿, 等. 模拟 CMOS 集成电路设计. 西安交通大学出版社), 2003.
    [22] Lisauskas A, Glaab D, Roskos H G, et al. Terahertz imaging with Si MOSFET focal-plane arrays[C]. Terahertz Technology and Applications II. International Society for Optics and Photonics, 2009, 7215: 72150J.
    [23] Al Hadi R, Sherry H, Grzyb J, et al. A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens [C]. IEEE MTT-S International Microwave Symposium. IEEE, 2011: 1-4.
    [24] John D. Kraus. Antennas. For All Applications[M]. 3rd ed. Beijing: Publishing House of Electronic Industry(约翰·克劳斯. 天线. 北京:电子工业出版社)
    [25] Kompfner R, Williams N T. Backward-wave tubes[J]. Proceedings of the IRE, 1953, 41(11): 1602-1611.
    [26] Ward J, Schlecht E, Chattopadhyay G, et al. Capability of THz sources based on Schottky diode frequency multiplier chains[C]. IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535). IEEE, 2004, 3: 1587-1590.
    [27] LI L, CHEN L, ZHU J, et al. Terahertz quantum cascade lasers with > 1 W output powers[J]. Electronics Letters, 2014, 50(4):309-310.
    [28] SR 830 User''''s Manual. accessed on Mar. 2019. [Online]. Available:https://www.thinksrs.com/downloads/pdfs/manuals/SR830m.pdf
    [29] Tauk R, Teppe F, Boubanga S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power[J]. Applied Physics Letters, 2006, 89(25): 253511.
    [30] Mackowiak V, Peupelmann J, Ma Y, et al. Nepnoise equivalent power[M]//Thorlabs, Inc. 2015.
    [31] Zdanevi?ius J, ?ibirait? D, Ikamas K, et al. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6): 613-621.
    [32] Bauer M, Venckevi?ius R, Ka?alynas I, et al. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz[J]. Optics express, 2014, 22(16): 19235-19241.
    [33] Boppel S, Lisauskas A, Bauer M, et al. Optimized Tera-FET detector performance based on an analytical device model verified up to 9 THz [C]. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on. IEEE, 2013: 1-1.
    [34] Ikamas K, Lisauskas A, Boppel S, et al. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(10): 1183-1188.
    [35] Ahmad Z, Lisauskas A, Roskos H G. 9.74-THz electronic Far-Infrared detection using Schottky barrier diodes in CMOS[C]. IEEE International Electron Devices Meeting. IEEE, 2014: 4.4. 1-4.4. 4.
    [36] Boppel S, Lisauskas A, Mundt M, et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3834-3843.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

方桐,刘力源,刘朝阳,冯鹏,李媛媛,刘俊岐,刘剑,吴南健.基于65 nm标准CMOS工艺的3.0 THz 探测器[J].红外与毫米波学报,2020,39(1):56~64]. FANG Tong, LIU Li-Yuan, LIU Zhao-Yang, FENG Peng, LI Yuan-Yuan, LIU Jun-Qi, LIU Jian, WU Nan-Jian. A 3.0 THz detector in 65 nm standard CMOS process[J]. J. Infrared Millim. Waves,2020,39(1):56~64.]

复制
分享
文章指标
  • 点击次数:1427
  • 下载次数: 2782
  • HTML阅读次数: 1021
  • 引用次数: 0
历史
  • 收稿日期:2019-05-08
  • 最后修改日期:2019-12-17
  • 录用日期:2019-08-22
  • 在线发布日期: 2020-01-07
文章二维码