1.
P237
国家自然科学基金“结合形态和营养指标的小麦长势遥感监测方法” 41601466;国家重点研发计划项目“粮食作物重大病虫害遥感监测预警与防控技术” 2017YFE0122400;中国科学院青年创新促进会 2017085;北京市教委科技计划一般项目 KM201710028002国家自然科学基金“结合形态和营养指标的小麦长势遥感监测方法”(41601466);国家重点研发计划项目“粮食作物重大病虫害遥感监测预警与防控技术”(2017YFE0122400);中国科学院青年创新促进会(2017085);北京市教委科技计划一般项目(KM201710028002).
1.
National Natural Science Foundation of China 41601466; National Key R&D Program of China 2017YFE0122400;Youth Innovation Promotion Association CAS 2017085;Beijing Municipal Commission of Education grant KM201710028002Supported by National Natural Science Foundation of China (41601466); National Key R&D Program of China (2017YFE0122400); Youth Innovation Promotion Association CAS (2017085); Beijing Municipal Commission of Education grant (KM201710028002)
李雪玲,董莹莹,朱溢佞,黄文江.基于EnMAP卫星和深度神经网络的LAI遥感反演方法[J].红外与毫米波学报,2020,39(1):111~119]. LI Xue-Ling, DONG Ying-Ying, ZHU Yi-Ning, HUANG Wen-Jiang. Leaf area index estimation with EnMAP hyperspectral data based on deep neural network[J]. J. Infrared Millim. Waves,2020,39(1):111~119.]
复制