基于稀疏表示的红外空中目标分类算法
作者:
作者单位:

1.中国科学院上海技术物理研究所,上海 200083;2.中国科学院大学,北京 100049;3.中国科学院红外探测与成像技术重点实验室,上海 200083

作者简介:

通讯作者:

中图分类号:

基金项目:


Rotation-invariant infrared aerial target identification based on SRC
Author:
Affiliation:

1.Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.CAS Key Laboratory of Infrared System Detection and Imaging Technology,Shanghai Institute of Technical Physics, Shanghai 200083, China

Fund Project:

the Thirteen Five National Defense Research Foundation Jzx2016-0404/Y72-2;Shanghai Key Laboratory of Criminal Scene Evidence funded Foundation 2017xcwzk08Supported by the Thirteen Five National Defense Research Foundation (Jzx2016-0404/Y72-2); Shanghai Key Laboratory of Criminal Scene Evidence funded Foundation (2017xcwzk08).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主方向旋转至同一参考方向.接着基于稀疏表示原理,把分类问题转化为1范数最小化问题,最后用快速收敛方法得到分类结果.实验结果表明该方法能够达到98.3%的正确率,给测试图像50%的像素叠加噪声后,分类正确率仍大于80%.

    Abstract:

    Aircraft identification is implemented on thermal images acquired from ground-to-air infrared cameras. SRC is proved to be an effective image classifier robust to noise, which is quite suitable for thermal image tasks. However, rotation invariance is challenging requirements in this task. To solve this issue, a method is proposed to compute the target main orientation firstly, then rotate the target to a reference direction. Secondly, an over-complete dictionary is learned from histogram of oriented gradient features of these rotated targets. Thirdly, a sparse representation model is introduced and the identification problem is converted to a l1-minimization problem. Finally, different aircraft types are predicted based on an evaluation index, which is called residual error. To validate the aircraft identification method, a recorded infrared aircraft dataset is implemented in an airfield. Experimental results show that the proposed method achieves 98.3% accuracy, and recovers the identity beyond 80% accuracy even when the test images are corrupted at 50%.

    参考文献
    相似文献
    引证文献
引用本文

金璐,李范鸣,刘士建,王霄.基于稀疏表示的红外空中目标分类算法[J].红外与毫米波学报,2019,38(5):578~586]. JIN Lu, LI Fan-Ming, LIU Shi-Jian, WANG Xiao. Rotation-invariant infrared aerial target identification based on SRC[J]. J. Infrared Millim. Waves,2019,38(5):578~586.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-09
  • 最后修改日期:2019-07-08
  • 录用日期:2019-04-23
  • 在线发布日期: 2019-08-31
  • 出版日期:
文章二维码