将粒子残差一致性度量的滤波算法用于纯方位被动跟踪
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学重点项目(60634030),国家自然科学基金(60702066),航空科学基金(2007ZC5303),航天科技创新基金(CASC0214).


APPLYING THE FILTEING ALGORITHM WITH PARTICLE RESIDUAL CONSISTENCY MEASURE TO BEARINGS-ONLY PASSIVE TRACKING
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在低信扰比条件下的纯方位被动跟踪中,针对量测似然度评估粒子权重的方式对于滤波结果的不利影响,提出了一种基于粒子残差一致性度量的粒子滤波算法.首先,利用粒子残差实现采样粒子由状态空间到量测空间的映射变换;在此基础上,通过置信度距离和置信度矩阵的构建及求解,完成对于粒子权重的合理度量.新的粒子权重评估方法实现了对于最新量测信息及粒子间蕴含冗余和互补信息的充分提取和利用,使得粒子权重度量结果更加稳定和可靠.最后,仿真实验验证了算法的有效性.

    Abstract:

    Under the conditions of low signal-to-interference ratio, aiming at the disadvantageous influence that particles weights are evaluated by means of measurement likelihood score in the bearings-only passive tracking, a novel particle algorithm based on particle residual consistency measure is proposed. Firstly, particle residual is used to realize the mapping transformation of sampling particle from state space to measurement space. Then, confidence level distance and confidence level matrix are constructed and solved to complete the reasonable evaluation of particles weights. The new method effectively extracts and uses the latest measurement information and particles themselves redundancy and complementary information, therefore it make evaluation results of particles weights more stable and reliable. Finally, experiments demonstrate the efficiency of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

胡振涛,潘 泉,杨 峰.将粒子残差一致性度量的滤波算法用于纯方位被动跟踪[J].红外与毫米波学报,2010,29(1):75~80]. HU Zhen-Tao, PAN Quan, YANG Feng. APPLYING THE FILTEING ALGORITHM WITH PARTICLE RESIDUAL CONSISTENCY MEASURE TO BEARINGS-ONLY PASSIVE TRACKING[J]. J. Infrared Millim. Waves,2010,29(1):75~80.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-05
  • 最后修改日期:2009-08-31
  • 录用日期:2009-03-25
  • 在线发布日期: 2009-12-28
  • 出版日期:
文章二维码