基于均匀网格编码量化的超光谱图像自适应压缩
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN919.81 TP391

基金项目:

国家 8 63高技术研究资助项目 ( 2 0 0 2AA13 40 2 0— 0 5 )


ADAPTIVE COMPREESION OF HYPER-SPECTRAL IMAGES BASED ON UNIFORM TRELLIS-CODED QUANTIZATION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于小波系数分类的超光谱图像压缩方法.算法首先将各波段小波分解并将所得子带划分成子块,而后根据子块活动性将其分类.在分类基础上,使用预测差分技术去除谱间冗余,此过程中分别求取各子类的预测系数以反映子带的局部相关性,而后利用均匀网格编码量化方法来量化残差系数序列,最后使用自适应算术编码对量化码字进行熵编码,为使编码器能在所有系数序列中最优地分配比特,本文提出一个基于序列统计特性和网格编码量化器率-失真特性的比特分配算法,实验证明该方法能高效地压缩超光谱图像,表现出优异的压缩性能。

    Abstract:

    An approach for compression of hyper-spectral image based on classification of sub-bands was proposed firstly. The wavelet decomposition was carried out and the sub-bands were partitioned into sub-blocks. Then sub-blocks were classified based on their activity. Based on classification, the algorithm uses prediction to remove the spectral redundancy, in which the algorithm computes the predictor for each class to reflect local correlation in sub-band images. Then the uniform trellis-coded quantization is used to quantize the error images. At last, entropy encoding of the quantized codeword is performed by adaptive arithmetic encoding. To optimally allocate bits through all series of coefficients, an algorithm for bit allocation based on statistic characteristic of the series of coefficients and R-D characteristic of trellis-coded quantizer was proposed. The experiments show that the approach can efficiently compress hyper-spectral remote sensing images, and the excellent performance of the proposed algorithm is demonstrated.

    参考文献
    相似文献
    引证文献
引用本文

吴颖谦 方涛 施鹏飞.基于均匀网格编码量化的超光谱图像自适应压缩[J].红外与毫米波学报,2004,23(5):349~352356]. WU Ying-Qian, FANG-Tao, SHI Peng-Fei. ADAPTIVE COMPREESION OF HYPER-SPECTRAL IMAGES BASED ON UNIFORM TRELLIS-CODED QUANTIZATION[J]. J. Infrared Millim. Waves,2004,23(5):349~352356.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码