利用温度和植被指数进行地物分类和土壤水分反演
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

Q949 S152.7

基金项目:

国家 973计划 (批准号G2 0 0 0 0 7790 0 ),北京精准农业示范资助项目~~


TARGET CLASSIFICATION AND SOIL WATER CONTENT REGRESSION USING LAND SURFACE TEMPERATURE(LST)AND VEGETATION INDEX(VI)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    首先利用地物表面温度和植被指数,成功地对北京精准农业示范区内生长旺盛小麦、稀疏小麦、池塘水体、水草、淤泥和裸露土壤等6种地物进行了分类,其次,利用地物表现温度(LST)和归一化植被指数(NDVI)作为坐标系,建立LST-NDVI三角形分布的散点图,分析了散点图的地物特征分布及其物理意义,与植被的红外和近红外两个特征波段构造的散射图相比,同类样本的离散度更小,不同类别样本之间的距离更大。最后,提出了植被指数--表面温度的土壤水分反演模型,结合地面采样数据成功地反演了实验区内作物地块的土壤水分。

    Abstract:

    Land surface temperature(LST) and NDVI were used for classification and soil water content(SWC) regression. Firstly, the 6 kinds of targets, dense wheat, sparse wheat, naked soil, water in ponds, silt and aquatic plants, were well classified using LST and NDVI channels. Secondly, the triangle shaped scatter plot was built and analyzed using LST and NDVI channels. Compared with the scatter plot built by red and near infrared bands, the spectral distances between different clatssifications are larger, and the samples in the same classification are more convergent. Finally, a VIT model was presented to extract SWC using LST and NDVI channel, which predicts the moisture well. The mapping of soil's moisture in the wheat area was calculated and illustrated for scientific irrigation and precise agriculture.

    参考文献
    相似文献
    引证文献
引用本文

刘良云 刘银年 等.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,21(4):269~273]. LIU Liang Yun ) ZHANG Bing ) ZHENG Lan Fen ) TONG Qing Xi ) LIU Yin Nian ) XUE Yong Qi ) YANG Min Hua ) ZHAO Chun Jiang ). TARGET CLASSIFICATION AND SOIL WATER CONTENT REGRESSION USING LAND SURFACE TEMPERATURE(LST)AND VEGETATION INDEX(VI)[J]. J. Infrared Millim. Waves,2002,21(4):269~273.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2001-08-13
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码