弱目标箱粒子标签多伯努利多目标检测与跟踪算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61561016);广西自然科学基金(2016GXNSFAA380073, 2014GXNSFAA118352, 2014GXNSFBA118280)


Weak Targets Box Particle Labeled Multi-bernoulli Multi-target Detection and Tracking Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外弱目标追踪问题,提出箱粒子标签多伯努利多目标检测与追踪(Box particle Labeled Multi-Bernoulli Detection and Tracking, BOX-LMB-DT)算法,该算法首先通过使用均值滤波对获得的灰度图像进行降噪处理;其次,通过将所有像素处依强度大小进行排序,选出强度较大的区域作为当前时刻的区间量测;最后利用箱粒子标签多伯努利滤波(Box-Labeled Multi-Bernoulli Filter, Box-LMB)器对目标进行跟踪。仿真结果表明,本文所提箱粒子标签多伯努利多目标检测与追踪算法能够对多目标的航迹和状态进行稳定有效的跟踪,且在相同条件下,相较于区间量测下的LMB粒子滤波,达到相同的追踪性能时BOX-LMB滤波运算效率提升了22.59%。

    Abstract:

    For the problem of tracking infrared weak targets, a box particle labeled multi-bernoulli multi-target detection and tracking algorithm is proposed. To begin with, the algorithm using the mean filter to denoise the grayscale image, Then, the region with higher intensity is selected as the interval measurement at current time by sorting the intensity of all the pixels, Finally, the box particle labeled multi-bernoulli filter is applied to tracking. Simulation are presented to demonstrate that the BOX-LMB-DT algorithm has stable, effective performance. In the same conditions, compared with the LMB particle filter under interval measurement, the operation efficiency of the BOX-LMB filtering is improved by 22.59% when the same tracking performance is achieved.

    参考文献
    相似文献
    引证文献
引用本文

蔡如华,杨 标,吴孙勇,李 瞳,孙希延.弱目标箱粒子标签多伯努利多目标检测与跟踪算法[J].红外与毫米波学报,2019,38(2):234~244]. CAI Ru-Hua, YANG Biao, WU Sun-Yong, LI Tong, SUN Xi-Yan. Weak Targets Box Particle Labeled Multi-bernoulli Multi-target Detection and Tracking Algorithm[J]. J. Infrared Millim. Waves,2019,38(2):234~244.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-03
  • 最后修改日期:2018-10-15
  • 录用日期:2018-10-18
  • 在线发布日期: 2019-05-08
  • 出版日期:
文章二维码