基于高光谱图像的协同分层波谱识别--以兰州、榆林地区为例
作者:
作者单位:

西藏民族大学 西藏光信息处理与可视化技术重点实验室陕西 咸阳 712082

中图分类号:

TP751.1;P237.4

基金项目:

国家自然科学基金资助项目 41361044;西藏自治区自然科学基金项目 XZ2019ZRG-43国家自然科学基金资助项目(41361044 );西藏自治区自然科学基金项目(XZ2019ZRG-43)


Hierarchical spectrum recognition based on hyper-spectral images
Author:
Affiliation:

Xizang Key Laboratory of Optical Information Processing and Visualization Technology, Xizang Minzu UniversityXianyang 712082, China

Fund Project:

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出协同分层波谱识别法,分别从兰州、榆林市Hyperion高光谱图像上识别9种目标地类,并与SVM监督分类对比。针对Hyperion图像波谱识别的4个难点:光谱信息高保真融合、敏感谱段提取、“椒盐效应”去除、 消除“同物异谱” 现象导致的误判,协同应用WP-GS融合、导数变换、4尺度面向对象分割和多谱段SAM解决上述难点,并基于Hyperion导数变换图像分析波谱变化特征、提取敏感谱段、从4个尺度层依次识别9种目标地类,然后根据目视评判和定量评价,与综合使用Gram-Schmidt光谱锐化融合/Savitzky-Golay卷积滤波/PCA变换的SVM监督分类结果比较识别精度。实验结果表明WP-GS融合的光谱保真效果优于Gram-Schmidt光谱锐化;4尺度面向对象分割抑制“椒盐效应”的效果优于Savitzky-Golay卷积滤波、移动均值滤波;多谱段SAM利用导数波谱特征能够消除因照度不同对同一类别地物的误判。采用协同分层波谱识别法,兰州市Hyperion图像波谱识别的总体精度、Kappa系数分别为89.52%、0.852,较SVM分类分别提高18.68%和17.52%;榆林市Hyperion图像识别地物的总体精度、Kappa系数分别为91.12%、0.873,较SVM分类分别提高17.80%和16.89%。协同分层波谱识别法应用多种技术一体化解决Hyperion图像应用难点,有效利用导数波谱变化特征提取目标敏感谱段,在复杂环境下识别目标地类的能力优于SVM监督分类。

    Abstract:

    Hierarchical spectrum recognition is pointed out in the aspect of hyper-spectralimage classification using Hyperion imagesof Lanzhou and Yulin in China, by the comparison study of SVM supervised classification.There are 4 problems for hyper-spectralimage classification: spectral information fidelity image fusion, extraction of sensitive band, removal of "salt and pepper effect" which avoids misclassification for "same body with different spectrum" phenomenon. Hierarchical spectrum recognitionputs forward 4 methods for solving these problems,which are WP-GS image fusion, derivative transformation, object oriented segmentation with 4 scales and multispectral SAM. Hierarchical spectrum recognitioncan identify 9 kinds land type exactly, based on sensitive bands extracted from derivative transformationimage. Visual examination and quantifiable evaluation have been executed to verify authenticity. By contrast, SVM supervised classification is tested, with Gram-Schmidt Spectral sharpening/ Savitzky-Golay convolution filtering/PCA transformation.Using the method of hierarchical spectrum recognition proposed in this paper, the above 4 problems for hyper-spectralimage classification are solved, and good classification results is achieved, with overall classification accuracy and kappa coefficient as 89.52%, 0.852 in Lanzhou, 91.12%、0.873 in Yulin. Growth of 18.68% in Lanzhou and 17.80% in Yulin for overall classification accuracy, as well as17.52% in Lanzhou and 16.89% in Yulin for kappa coefficient are achieved compared with SVM supervised classification.Hierarchical spectrum recognition can provide more accurate recognition results are provided for Hyperion images classification in comparison with SVM supervised classification .

    参考文献
    [1] TONG Qing-Xi, XUE Yong-Qi, ZHANG Li-Fu. Progress in hyperspectral remote sensing science and technology in China over the past three decades[J].IEEE Journal of Selected Topics Applied Earth Observation Remote Sensing, 2014, 7(01):70-91.
    [2] He Yong, ZHAO Chun-Jiang, WU Di, et al. Fast detection technique and sesor instrucments for crop-environment information :A review [J] . Chinese Science: Information Science, (何勇,赵春江,吴迪,等.作物-环境信息的快速获取技术与传感仪器.中国科学:信息科学) 2010,40(S1):1-20.
    [3] Tong Q X, ZHANG B, ZHANG L F. Current progress of hyperspectral remote sensing in China [J] . Journal of Remote Sensing, (童庆禧,张兵,张立福.中国高光谱遥感的前沿进展.遥感学报)2016, 20(05): 689–707.
    [4] PAN Yi-Fan, ZHANG Xian-Feng, TONG Qing-Xi, et al.Progress on road pavement condition detection based onremote sensing monitoring [J] . Journal of Remote Sensing, (潘一凡,张显峰,童庆禧,等.公路路面质量遥感监测研究进展.遥感学报) 21(05): 796–811
    [5] ZHAO Chun-hui, WANG Xin-peng, YAO Xi-feng, TIAN Ming-hua.A background refinemen t method based onocal density for hyperspectral anomaly detection [J]. Journal of Central South University,2018,25(01):84-94..
    [6] AN Ru, LU Cai-Hong, WANG Hui-Lin, et al. Remote sensing identification of rangeland degradation using Hyperion hyperspectral image in a typiacal area for three-river headwater region, Qinghai, China [J]. Geomatics and Information Science of Wuhan University, (安如,陆彩红,王慧麟,等.三江源典型区草地退化Hyperion高光谱遥感识别研究.武汉大学学报:信息科学版) 2018,43(03):399-405.
    [7] WANG Gui-Zhen, ZHANG Li-Fu, SUN Xue-Jian, et al. Mineral alteration information extraction based on SREM fusion data[J]. Earth Science—Journal of China University of Geosciences, (王桂珍,张立福,孙雪剑,等.基于SREM融合数据的矿物蚀变信息提取. 地球科学(中国地质大学学报)) 2015,40(038):1330-1338.
    [8] TAN Bing-Xiang, LI Zeng-Yuan, Chen Er-Xue, et al.Estimating forest crownclosureusingHyperionhyperspectral data [J].Journal of BeijingForestryUniversity, (谭炳香,李增元,陈尔学,等.Hyperion高光谱数据森林郁闭度定量估测研究.北京林业大学学报) 2006,28(03):95-101.
    [9] YANG Bin, WANG Bin.Review of nonlinear unmixing for hyperspectral remote sensing imagery [J].J. Infrared Millim. Waves, (杨斌,王斌.高光谱遥感图像非线性解混研究综述.红外与毫米波学报) 2017,36(02):173-185.
    [10] FENG Xiao, XIAO Peng-Feng, LI-Qi, et al.Hyperspectral image classification based on 3-D gabor filter and support vector machins[J].Spectroscopy and Spectral Analysis, (冯逍,肖鹏峰,李琦,等三维Gabor滤波器与支持向量机的高光谱遥感图像分类. 光谱学与光谱分析) 2014,34(08):2218-2224.
    [11] ZHANG Xi-Ya, XU Hai-Qin, LI Pei-Jun. Lithologic mapping using EO-1 Hyperion data and extended OCSVM[J].Acta Scientiarum Naturalium Universitatis Pekinensis, (张西雅,徐海卿,李培军.运用EO-1 Hyperion数据和单类支持向量机方法提取岩性信息.北京大学学报(自然科学版))2012,48(03):411-418.
    [12] Sun X J, Zhang L F, Yang H, Wu T X, Cen Y and Guo Y. En-hancement of spectral resolution for remotely sensed multispec-tral image [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015. 8(5): 2198–2211
    [13] WANG Yue-Ming, JIA Jian-Xin, HE Zhi-Ping, et al.Key technologies of advanced hyperspectral imaging system [J] . Journal of Remote Sensing, (王跃明,贾建鑫,何志平,等.若干高光谱成像新技术及其应用研究.遥感学报) 2016, 20(05): 850–857.
    [14] NIU Yu-Bin, WANG Bin.A novel target spectrum learning algorithm for small target dectection in hyperspectral imagery[J].J. Infrared Millim. Waves, (钮宇斌,王斌.一种新的用于高光谱图像小目标探测的目标光谱学习算法.红外与毫米波学报) 2017,36(04):471-480.
    [15] WANG Jian-Yu, LI Chun-Lai, LU Gang, et al.The calibration of infrared hyperspectral imager and its flight test validation in laboratory[J].J. Infrared Millim.Waves, 王建宇,李春来,吕刚,等.红外高光谱成像仪的系统测试标定与飞行验证.红外与毫米波学报 2017,36(01):69-74.
    [16] ZHAO Chun-hui, WANG Li-Guo, QI Bin. Image processing method and application of hyperspectral remote sensing [J].Beijing:Publishing House of Electronics Industry, (赵春晖,王立国,齐滨. 高光谱遥感图像处理方法及应用.北京:电子工业出版社.)2016.
    [17] LIU Chunyan, GUO Hongqin,ZHANG Xuehong,CHEN Jian.Combining Decision Trees with Angle Indices to Identify Mangrove Forest at Shenzhen Bay, China [J].Journal of Resources and Ecology,2017,8(05):545-549.
    [18] TANG Fei, XU Han-Qiu. A LSMA-based coparision of the performances in retrieving impervious surface between Landsat ETM+ and EO-1 ALI [J]. Geomatics and Information Science of Wuhan University, (唐菲,徐涵秋.不同传感器线性光谱分解反演不透水面的对比——以Landsat ETM+和EO-1 ALI为例.武汉大学学报(信息科学版)) 2013, 38(09):1068-1072.
    [19] YANG Ke-Ming, ZHANG Tao, WANG Li-bo, et al.Harmonic analysis fusion of hyperspectral image and its spectral information fidelity evaluation[J].Spectroscopy and Spectral Analysis杨可明,张涛,王立博,等.谐波分析法高光谱影像融合及其光谱信息保真度评价[J].光谱学与光谱分析, 2013,33(09):2496-2501
    [20] LI Cun-Jun, LIU Liang-Yun, WANG Ji-Hua, et al.Comparisonof two methodsof fusing remote sensing imageswith fidelityof spectral information[J].Journal of ImageandGraphics, (李存军,刘良云,王纪华,等.两种高保真遥感影像融合方法比较.中国图象图形学报) 2004,9(11):1376-1385.
    [21] WU Yi-Quan, ZHOU Yang, SHENG Dong-Hui, et al. Band selection of hyperspectral image bansed on optimal linear prediction of principal components in subspace[J].J. Infrared Millim.Waves, 吴一全,周杨,盛东慧,等.基于子空间中主成分最优线性预测的高光谱波段选择.红外与毫米波学报 2018,37(01):119-128.
    [22] XU Han-Qiu, WANG Mei-Ya.Remote sensing-based retrieval of ground impervious surfaces [J] . Journal ofRemote Sensing, (徐涵秋,王美雅. 地表不透水面信息遥感的主要方法分析. 遥感学报)2016, 20(05): 1270–1289..
    [23] HE Ying-Jie, XIE Dong-Hai, ZHONG Ruo-Fei.Research on SG filteringalgorithm based on hyperspctral image [J] . Journal ofCapital NormalUniversity(Natural Science Edition ), (何英杰,谢东海,钟若飞.基于高光谱影像的SG滤波算法的研究.首都师范大学学报(自然科学版)) 2018, 39(02): 70–75.
    [24] YUAN Ying, WANG Wei, Xuan ZHE, et al.Selection of characteristic wavelength using SPA and qualitative discrimination of mildew degree of corn kernels based on SVM[J].Spectroscopy and Spectral Analysis, (袁莹,王伟,褚璇,等.光谱特征波长的SPA选取和基于SVM的玉米颗粒霉变程度定性判别.光谱学与光谱分析) 2016,36(01):226-230.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘炜,孙海霞,杨晓波.基于高光谱图像的协同分层波谱识别--以兰州、榆林地区为例[J].红外与毫米波学报,2020,39(1):99~110]. LIU Wei, SUN Hai-Xia, YANG Xiao-Bo. Hierarchical spectrum recognition based on hyper-spectral images[J]. J. Infrared Millim. Waves,2020,39(1):99~110.]

复制
分享
文章指标
  • 点击次数:1059
  • 下载次数: 2739
  • HTML阅读次数: 1970
  • 引用次数: 0
历史
  • 收稿日期:2018-07-10
  • 最后修改日期:2020-01-17
  • 录用日期:2019-02-19
  • 在线发布日期: 2020-01-07
文章二维码