高分一号光学遥感数据自适应云区识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

“十三五”国家重点研发计划“林业资源培育及高效利用技术创新”专项“落叶松高效培育技术研究”项目“多尺度落叶松人工林生长预测”课题(编号:2017YFD0600404);国家自然科学基金“基于高分辨率遥感数据的森林生物多样性监测” (编号:31570546);中央高校基本科研业务费专项资金项目“L波段森林的微波辐射与传输特性研究” (编号:2015KJJCA12).


Self-adaptive cloud detection approach for GaoFen-1 optical remote sensing data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光学卫星遥感数据在获取过程中易受云层干扰,云区识别是光学遥感数据应用及分析的一个基础但重要的步骤,高效的云区识别技术对节省数据收集成本和提高数据利用效率具有较强的现实意义。同态滤波算法是经典的基于单幅影像的云区识别方法之一,该算法具有计算快速方便、云区检测精度较高的优点,但识别的云区范围极大程度取决于同态滤波器截止频率的位置。最优截止频率难以确定,通常采用经验值,显然经验截止频率无法适应大批量遥感数据的自动处理需求。针对以上问题,本文通过建立输入影像频谱能量与截止频率的关系,结合白度指数(Whiteness Index)和形态学算子,实现对国产高分辨率光学卫星高分一号(GF-1)遥感数据的批量云区识别处理。与传统同态滤波方法相比,该算法能根据影像频谱能量自适应判定同态滤波时采用的截止频率,具有更强的适用性。通过对98景GF-1多光谱数据进行随机点人工目视标记,精度检验结果表明该算法对云区有较好的检测效果,总体识别精度达93.81%。文中算法对GF-1遥感数据能进行批量化云区自动检测,获得高精度的云区掩膜结果,并有效降低高反射率地物造成的误识率。

    Abstract:

    Cloud detection for remote sensing imageries is a fundamental but significant step due to the inevitable existence of large amount of clouds in the optical remote sensing data. A highly efficient cloud detection approach is capable of saving data collection cost and improving data utilization efficiency. Homomorphic filtering algorithm is one of the most commonly methods which based on single-scene image for detecting clouds. The algorithm has the advantage of fast computation and high accuracy in cloud areas detection. However, the cloud areas results are depended heavily on the cut-off frequency of the filter. The classical homomorphic filtering often uses cut-off frequency with empirical value which may not be applicable to large amount of intricate input data. Therefore, this paper aims to build the relationship between the image spectra power and the filter cut-off frequency. Based on the domestic high spatial resolution optical remote sensing data GF-1, this method makes the detection of clouds can be process to achieve a bulk deal. Our approach can self-adaptive changes the cut-off frequency rather than used empirical value when compared with the traditional homomorphic filtering, thus it could be able to meet more complicated scenarios. Further, the post-processing steps including whiteness index, spectral threshold, and morphological opening and closing operators are applied to coarse cloud mask to optimize results. We have tested on 98 GF-1 high resolution multispectral images, results indicated that our approach is capable of detecting cloud as well as haze areas with high accuracy of 93.81%. This novel self-adaptive method shows its great application potential for real-time and high efficient cloud detection, meanwhile reduced the error detection rates caused by high reflectance ground objects.

    参考文献
    相似文献
    引证文献
引用本文

蒙诗栎,庞勇,张钟军,李增元.高分一号光学遥感数据自适应云区识别[J].红外与毫米波学报,2019,38(1):103~114]. MENG Shi-Li, PANG Yong, ZHANG Zhong-Jun, LI Zeng-Yuan. Self-adaptive cloud detection approach for GaoFen-1 optical remote sensing data[J]. J. Infrared Millim. Waves,2019,38(1):103~114.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-23
  • 最后修改日期:2018-06-21
  • 录用日期:2018-06-26
  • 在线发布日期: 2019-03-12
  • 出版日期:
文章二维码