一种基于单形体正化的高光谱数据全约束线性解混方法
作者:
作者单位:

中国科学院电子学研究所,中国科学院电子学研究所,中国科学院电子学研究所,中国地质大学(北京)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划);中国地质调查局地质调查项目(1212011120226);中国科学院科技服务网络计划项目(KFJ-EW-STS-046)


A fully constrained linear unmixing method: Simplex regularization for hyperspectral imagery
Author:
Affiliation:

Institute of Electronics, Chinese Academy of Sciences,Institute of Electronics, Chinese Academy of Sciences,Institute of Electronics, Chinese Academy of Sciences,China University of Geosciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在端元已知情况下, 线性混合模型的非负约束最小二乘无闭式解, 需要多次迭代得收敛最优解, 时间复杂度高.通过高光谱数据凸面几何特性分析, 指出当数据为正单形体时, 可经有限步骤快速得线性混合模型最优解.据此提出一种单形体正化的高光谱数据全约束线性解混方法, 据已知端元进行单形体正化, 采用和为一约束求解丰度系数, 最后迭代剔除丰度负值端元得全约束解.实验结果表明该方法可获得传统全约束解一致的丰度估计, 且效率大大提升.

    Abstract:

    With a priori information of the known endmembers in hyperspectral image, there is no closed-form solution of Least Square (LS) method for linear mixing model under the Abundance Non-negativity Constraint (ANC). So many iterations which may result in big computational complexity are needed in the traditional Fully Constrained LS (FCLS) methods to obtain the optimal solution. In this paper, an analysis of impacts on abundance estimation of hyperspectal image in different simplex shapes was implemented and a fully constrained linear unmixing method based on simplex regularization was proposed which could get optimal solution under limited iteration when the hyperspectral image was spanned into a regular simplex. The proposed method was carried out by three steps. Firstly, the simplex of hyperspectral image was regularized by the known endmembers’ whitening matrix. Secondly, the analytical solution of abundance coefficients was obtained under Abundance Sum-to-one Constraint (ASC). Then for every pixel, the FCLS solution was achieved by eliminating the endmembers with negative abundance coefficients and solving the ASC equation iteratively. Experiments on simulated and real hyperspectral images indicate that the proposed method can obtain consistent results with traditional FCLS method and decrease the computational burden efficiently.

    参考文献
    相似文献
    引证文献
引用本文

许宁,耿修瑞,尤红建,曹银贵.一种基于单形体正化的高光谱数据全约束线性解混方法[J].红外与毫米波学报,2016,35(5):592~599]. XU Ning, GENG Xiu-Rui, YOU Hong-Jian, CAO Yin-Gui. A fully constrained linear unmixing method: Simplex regularization for hyperspectral imagery[J]. J. Infrared Millim. Waves,2016,35(5):592~599.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-18
  • 最后修改日期:2016-01-07
  • 录用日期:2016-01-12
  • 在线发布日期: 2016-10-05
  • 出版日期:
文章二维码