基于省域尺度的农田土壤重金属高光谱预测
作者:
作者单位:

浙江大学环境与资源学院农业遥感与信息技术应用研究所,浙江大学环境与资源学院农业遥感与信息技术应用研究所,塔里木大学植物科学学院,浙江大学环境与资源学院农业遥感与信息技术应用研究所,浙江大学环境与资源学院农业遥感与信息技术应用研究所,浙江大学环境与资源学院农业遥感与信息技术应用研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863计划课题(2013AA10230105)、国家自然科学基金 (41271234)和浙江大学唐氏基金资助


Prediction of heavy metal content in soil of cultivated land: Hyperspectral technology at provincial
Author:
Affiliation:

Institute of Agricultural Remote Sensing and Information Technology Application,Zhejiang University;China;College of Plant Science,Tarim University,Alar,;China;Cyrus Tang Center for Sensor Materials and Applications,Zhejiang University;China,Institute of Agricultural Remote Sensing and Information Technology Application,Zhejiang University,Institute of Agricultural Remote Sensing and Information Technology Application,Zhejiang University,Institute of Agricultural Remote Sensing and Information Technology Application,Zhejiang University,Institute of Agricultural Remote Sensing and Information Technology Application,Zhejiang University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用浙江省36个县市的643个农田耕层土样的可见-近红外反射率数据以及重金属与有机质含量数据,分析了Ni、Cu、As、Hg、Zn、Cr、Cd、Pb含量与有机质含量的相关性,对比了不同重金属元素与有机质敏感波段的位置,并建立了各重金属元素含量的偏最小二乘回归(PLSR)模型.研究结果表明,Ni、Cr与有机质的相关性最优,As最差,相关系数分别为0.54、0.59、0.20,各重金属元素与有机质的相关系数与它在前三个主成份载荷图中与有机质的距离成反比;不同的重金属元素与有机质高光谱敏感波段的重叠度、回归系数的正负一致性具有明显差异,与有机质相关性越高的元素,其重叠度也越高、正负一致性也越好;在所有8种重金属元素的PLSR预测模型中,Ni、Cr的建模与预测效果较好,RPD值分别为1.94、1.80,模型具有一般的定量预测能力,其余6种重金属元素预测模型的RPD值均在1.00和1.40之间,模型只具备区别高值和低值的预测能力.该研究结果为大尺度区域土壤重金属污染的高光谱遥感监测提供了一定的理论依据与参考.

    Abstract:

    A total of 643 farmland topsoil samples distributed in 36 counties and cities of Zhejiang Province were collected. The correlation between contents of Ni, Cu, As, Hg, Zn, Cr, Cd and Pb and that of organic matter was probed by measuring the reflectance of soil samples in visible-near infrared light band. The characteristic wave bands of heavy metal elements and organic matter were compared. The partial least squares regression (PLSR) model for the content of each heavy metal element was established. The results indicated that Ni and Cr have the best correlation with organic matter, while As has the worst, with the correlation coefficients 0.54, 0.59 and 0.20, respectively. The distance between heavy metal elements and organic matter in the first three principal components loading diagram was inversely proportional to their correlation coefficient. Degree of overlap between different heavy metal elements and organic matter at hyperspectral sensitive band and the positive and negative consistency of regression coefficients varied greatly, the greater the correlation with organic matter is, the higher degree of overlap is, and the better the positive and negative consistency. In PLSR models of heavy metals, models for Ni and Cr performed well in modeling and predicting with a good ability of quantificational prediction, with RPD values of 1.94 and 1.80 separately. The remaining models for other 6 heavy metals could only conduct distinguishing for high and low values with RPD values ranged from 1.00 to 1.4. The results of this study provide certain theoretical assistance and reference for hyperspectral remote sensing monitoring of soil contamination by heavy metals in large-scale areas.

    参考文献
    相似文献
    引证文献
引用本文

夏 芳,彭 杰,王乾龙,周炼清,史 舟.基于省域尺度的农田土壤重金属高光谱预测[J].红外与毫米波学报,2015,34(5):593~599]. XIA Fang, PENG Jie, WANG Qian-Long, ZHOU Lian-Qing, SHI Zhou. Prediction of heavy metal content in soil of cultivated land: Hyperspectral technology at provincial[J]. J. Infrared Millim. Waves,2015,34(5):593~599.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-10-24
  • 最后修改日期:2015-02-24
  • 录用日期:2015-03-05
  • 在线发布日期: 2015-11-30
  • 出版日期:
文章二维码