基于矩阵分解的高光谱数据特征提取
作者:
作者单位:

西北工业大学 电子信息学院,西北工业大学 电子信息学院,西北工业大学 电子信息学院,西北工业大学 电子信息学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(No. 61171154)资助


Feature extraction on matrix factorization for hyperspectral data
Author:
Affiliation:

School of Electronics and Information, Northwestern Polytechnical University,School of Electronics and Information, Northwestern Polytechnical University,School of Electronics and Information, Northwestern Polytechnical University,School of Electronics and Information, Northwestern Polytechnical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用有限的标记样本, 将其作为硬性约束加入矩阵分解中;同时构建局部邻域graph, 挖掘数据的流形结构并保持局部的不变特性, 提出一种基于矩阵分解的高光谱数据特征提取(FEMF)方法.经过矩阵分解, 使得原始高维光谱特征空间中相近的数据在低维空间中仍然相近, 而相同类别的标记数据则被投影到同一个位置.这样的低维表示具有更强的判别性能, 从而得到更好的分类和聚类效果.该方法的求解过程是非凸规划问题, 同时给出了一个乘性更新规则获得局部优化解.最后, 对真实高光谱数据进行特征提取验证了该方法的有效性.

    Abstract:

    Limited labeled samples is used adequately as a hard constraint into matrix factorization. Meanwhile, the local graph of data is constructed to exploite the manifold structure and maintain the local invariance. As a result, feature extraction on matrix factorization for hyperspectral data(FEMF)was proposed. Through matrix decompose process, the nearby data in original space is still close after dimensionality reduction, and the congeneric labeled data is projected into the same position. Such low-dimensional representation has more powerful discriminate performance for classification and clustering. This issue is a non-convex programming problem, and an iterative multiplicative updates algorithm is introduced to achieving the local optimization. The efficiency of the proposed method was verified in real hyperspectral data feature extraction.

    参考文献
    相似文献
    引证文献
引用本文

魏峰,何明一,冯燕,李晓会.基于矩阵分解的高光谱数据特征提取[J].红外与毫米波学报,2014,33(6):674~679]. WEI Feng, HE Ming-Yi, FENG Yan, LI Xiao-Hui. Feature extraction on matrix factorization for hyperspectral data[J]. J. Infrared Millim. Waves,2014,33(6):674~679.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-04-11
  • 最后修改日期:2014-10-07
  • 录用日期:2014-09-12
  • 在线发布日期: 2014-11-27
  • 出版日期:
文章二维码