推扫型光学传感器的目标联合检测跟踪算法
作者:
作者单位:

国防科技大学 航天科学与工程学院,国防科技大学 电子科学与工程学院,国防科技大学 电子科学与工程学院,国防科技大学 航天科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

目标少帧检测与识别技术(9140A22030111KG01)


Joint target detection and tracking algorithm for shave-scan optical sensor
Author:
Affiliation:

College of Aerospace Science and Engineering,National University of Defense Technology,School of Electronic Science and Engineering,National University of Defense Technology,School of Electronic Science and Engineering,National University of Defense Technology,College of Aerospace Science and Engineering,National University of Defense Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了从扫描图像序列中检测弱小运动目标并对其状态参数进行估计, 提出一种基于随机有限集理论的目标联合检测跟踪算法.根据推扫型光学传感器的扫描特性, 建立目标在像平面的运动模型和测量模型.将目标状态和量测数据描述为随机有限集合, 将目标的联合检测跟踪问题建模为目标状态集的贝叶斯最优估计问题, 并依据随机有限集理论推导出贝叶斯滤波的预测和更新表达式.从算法实现的角度, 利用高斯混合技术实现算法的递推滤波.仿真结果表明, 该算法适应杂波的能力强, 对漏检的影响更小, 可以有效完成推扫型光学传感器的目标检测跟踪任务.

    Abstract:

    A random finite sets(RFS) theory based joint detection and tracking algorithm was proposed for detecting dim small moving target and estimating its state parameters from scan image sequences. By analyzing the scan characteristics of shave-scan optical sensor, a target dynamic model and observation model were established, respectively. Then target state and measurements was described as a RFS variable. The joint detection and tracking problem was modeled as a Bayesian optimal estimation problem. Prediction and updating formulas of this algorithm were derived using RFS theory. The algorithm implementation problem was taken into account. A Gaussian mixture(GM) implementation is presented. Simulation results show that this algorithm can depress clutters strongly while has small influence on missing detections. It can accomplish the target detection and tracking task efficiently for shave-scan optical sensor.

    参考文献
    相似文献
    引证文献
引用本文

张寅生,盛卫东,安 玮,刘 昆.推扫型光学传感器的目标联合检测跟踪算法[J].红外与毫米波学报,2015,34(1):106~113]. ZHANG Yin-Sheng, SHENG Wei-Dong, AN Wei, LIU Kun. Joint target detection and tracking algorithm for shave-scan optical sensor[J]. J. Infrared Millim. Waves,2015,34(1):106~113.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-10-28
  • 最后修改日期:2014-03-31
  • 录用日期:2014-04-01
  • 在线发布日期: 2015-04-06
  • 出版日期:
文章二维码