多偏移遥感图像的BP神经网络亚像元定位
作者:
作者单位:

香港理工大学武汉大学空间信息联合实验室,武汉大学 遥感信息工程学院,香港理工大学 土地测量与地理资讯学系

作者简介:

通讯作者:

中图分类号:

基金项目:

香港研究资助局项目(B-Q32M)、香港理工大学项目(G-YJ75)、国家科技支撑计划(2012BAJ15B04)和国家高技术研究发展计划(2012AA12A305)


Sub-pixel mapping based on BP neural network with multiple shifted remote sensing images
Author:
Affiliation:

Joint Research Laboratory on Spatial Information,The Hong Kong Polytechnic University and Wuhan University,School of Remote Sensing and Information Engineering,Wuhan University,Department of Land Surveying and Geo-Informatics,The Hong Kong Polytechnic University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种借助多偏移遥感图像来改进基于BP神经网络(BPNN)的亚像元定位新方法.不同于原BPNN方法使用单幅低空间分辨率观测图像, 新方法利用多幅带有亚像元偏移的低空间分辨图像来确定亚像元属于各类的概率, 然后根据概率值和地物覆盖比例确定亚像元类别, 以降低BPNN定位模型中的不确定性和误差.实验表明, 提出方法在视觉和定量评价上, 均能获得更高精度的亚像元定位结果, 验证了提出方法的有效性.

    Abstract:

    A new sub-pixel mapping method is presented in this paper, which makes use of multiple shifted remote sensing images to enhance the back-propagation neural network(BPNN)-based sub-pixel mapping method. Different from the original BPNN method that uses a single observed coarse spatial resolution image, the new method integrates multiple coarse spatial resolution images that are shifted from each other to determine the probability of a sub-pixel belonging to each class. The probabilities and land cover fractions are then used to allocate classes for sub-pixels. The proposed method can decrease the uncertainty and errors in BPNN-based sub-pixel mapping. Experimental results show that with both visual and quantitative evaluation, the proposed method can obtain more accurate sub-pixel mapping results.

    参考文献
    相似文献
    引证文献
引用本文

史文中,赵元凌,王群明.多偏移遥感图像的BP神经网络亚像元定位[J].红外与毫米波学报,2014,33(5):527~532]. SHI Wen-Zhong, ZHAO Yuan-Ling, WANG Qun-Ming. Sub-pixel mapping based on BP neural network with multiple shifted remote sensing images[J]. J. Infrared Millim. Waves,2014,33(5):527~532.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-04-30
  • 最后修改日期:2013-09-06
  • 录用日期:2013-09-06
  • 在线发布日期: 2014-11-13
  • 出版日期:
文章二维码