基于二维压缩感知的定向遥感和变化检测
DOI:
作者:
作者单位:

广西科技大学汽车与交通学院,武汉大学测绘遥感信息工程国家重点实验室,武汉大学测绘遥感信息工程国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Directional remote sensing and change detection based on two-dimensional compressive sensing
Author:
Affiliation:

Automotive,State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan,State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于高斯测量矩阵的一维压缩感知测量数据不仅能很好地保持稀疏信号的能量信息, 也能够很好地继承稀疏信号的方向信息.但是在一维压缩感知模型中方向信息无法应用于稀疏信号的重构和检验.针对遥感影像中变化区域稀疏的特点提出了二维压缩感知模型.并利用能量和方向信息构建了基于二维压缩感知的稀疏信号重构算法(2DOMP).理论分析和实验结果证明, 2DOMP算法的信号重构能力更强.同时根据压缩感知恢复稀疏信号只需要很少测量数据的特性提出了定向遥感和定向变化检测的概念.

    Abstract:

    One-dimensional compressive sensing measurement data based on Gaussian measurement matrix not only well retain sparse signal’s energy, but also inherited sparse signal’s direction information. However in the one-dimensional compression sensing model, direction information can not be applied to sparse signal reconstruction and examination. Two-dimensional compressive sensing model was proposed based on sparse features of change area in the remote sensing image. By use of energy and direction information, sparse signal reconstruction algorithm (2DOMP) was constructed based on two-dimensional compressed sensing. Theoretical analysis and experimental results demonstrated that signal reconstruction ability of 2DOMP algorithm is stronger than other methods. Meanwhile, the concepts of directional remote sensing and directional change are put forward based on the fact that very little measurement data are required to recovery sparse signal by compressive sensing.

    参考文献
    相似文献
    引证文献
引用本文

程涛,朱国宾,刘玉安.基于二维压缩感知的定向遥感和变化检测[J].红外与毫米波学报,2013,32(5):456~461]. CHENG Tao, ZHU Guo-Bin, LIU Yu-An. Directional remote sensing and change detection based on two-dimensional compressive sensing[J]. J. Infrared Millim. Waves,2013,32(5):456~461.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-12-08
  • 最后修改日期:2013-01-19
  • 录用日期:2013-02-26
  • 在线发布日期: 2013-11-12
  • 出版日期:
文章二维码