几何模型约束的SAR图像建筑物提取
DOI:
作者:
作者单位:

中国科学院遥感与数字地球研究所,中国科学院遥感与数字地球研究所,中国科学院遥感与数字地球研究所,中国科学院遥感与数字地球研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划);国家自然科学基金项目(面上项目,重点项目,重大项目);中国科学院知识创新项目


Geometrical model-based three-dimensional building extraction in high-resolution SAR imagery
Author:
Affiliation:

Institute of Remote Sensing and Digital Earth, Chinese Academy of sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高分辨率SAR图像进行建筑物提取的常规方法是首先利用二次散射特征线确定建筑物边界, 然后利用叠掩、阴影等散射特征来提取建筑物高度.当建筑物目标走向与星载SAR方位向夹角较大时, 其二次散射特征不明显, 常规重建方法不能取得理想结果.针对这类建筑物目标, 在分析SAR图像上的散射特征为平行四边形条带的基础上, 提出一种基于几何模型约束的建筑物自动提取与三维重建方法.将该方法应用于TerraSAR-X聚束模式图像, 并对提取结果进行了分析和评价, 表明该方法能够有效提取建筑物目标及其三维信息.

    Abstract:

    The traditional methods for 3D building extraction from high resolution monoscopic SAR imagery extract the footprint from bright lines caused by double bounce between ground and wall, then estimate height from features such as layover, shadow etc. However, it is very common that bright lines of buildings with large aspect angles are unrecognizable in SAR imagery, which makes these traditional methods useless. A new method was proposed for 3D extraction of these kinds of buildings from a single high resolution amplitude SAR image. This method relies on the constraint of geometrical model, assuming a parallelepipedic 3D building model. The performance of this new method were validated on test SAR data over two urban area.

    参考文献
    相似文献
    引证文献
引用本文

王国军,张风丽,徐 旭,邵芸.几何模型约束的SAR图像建筑物提取[J].红外与毫米波学报,2013,32(5):444~450]. WANG Guo-Jun, ZHANG Feng-Li, XU Xu, SHAO Yun. Geometrical model-based three-dimensional building extraction in high-resolution SAR imagery[J]. J. Infrared Millim. Waves,2013,32(5):444~450.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-11-25
  • 最后修改日期:2012-12-21
  • 录用日期:2012-12-25
  • 在线发布日期: 2013-11-12
  • 出版日期:
文章二维码