Abstract:According to the features of free-form surfaces which can improve the performance of optical systems and correct aberration, the advantages of using free-form surfaces in off-axis optical systems are analyzed. The optical system used is a Cook-TMA with a field angle of 30°×11°, a focal length of 150 mm and a F number of 3. In this design, the main reflector in the off-axis three-mirror optical system is designed by using a free-form surface. The performance improvement of using Zernike polynomial surface in a wide field off-axis reflecting optical system is analyzed and compared with that of the use of conventional aspheric surface. The advantages and disadvantages of free-form surfaces are analyzed. The results show that free-form surfaces have more advantages in the improvement of imaging quality of off-axis optical systems. The average transfer function of using free-form surface is 15.9% higher than that of using conventional aspheric surface. The system is close to diffraction limit. The use effectiveness of Zernike polynomial surface in the off-axis three-mirror optical system is good and the imaging performance of the system is improved greatly.