首页 | 杂志简介 | 征稿简则 | 投稿指南 | 常见问题 | 名词解释 | 刊物订阅 | 联系我们 | English
通过有限差分和MATLAB矩阵运算直接求解一维薛定谔方程
投稿时间:2009-10-13  修订日期:2009-10-27  点此下载全文
引用本文:王忆锋.通过有限差分和MATLAB矩阵运算直接求解一维薛定谔方程[J].红外,2010,31(3):42~46
摘要点击次数: 2446
全文下载次数: 4730
作者单位E-mail
王忆锋* 昆明物理研究所 wangyifeng63@qq.com 
中文摘要:根据有限差分法原理,将求解范围划分为一系列等间距的离散节点后,一维薛定谔方程转化为可以用一个矩 阵方程表示的节点线性方程组。利用MATLAB提供的矩阵左除命令,即可得到各未知节点的函数近似值。该方法概念简单,使用方便, 不需要花费较多精力编程即可求解大型线性方程组。
中文关键词:半导体  量子力学  薛定谔方程  有限差分法  MATLAB
 
Direct Solution of One-dimensional Schrodinger Equation through Finite Difference and MATLAB Matrix Computation
Abstract:According to the finite difference principle, a one-dimensional Schr\"{o}dinger equation can be converted into a set of nodal linear equations expressed in a matrix equation after the space is divided into a series of discrete nodes with an equal interval. The matrix left division command offered in the MATLAB software can be used to derive the function approximation of each unknown nodal function. This method is simple in concept, convenient in operation and can solve large linear equations without more efforts in programming.
keywords:semiconductor  quantum mechanics  Schrodinger equation  finite difference method  MATLAB
查看全文  HTML  查看/发表评论  下载PDF阅读器

版权所有:《红外》编辑部

北京勤云科技发展有限公司