首页 | 杂志简介 | 征稿简则 | 投稿指南 | 常见问题 | 名词解释 | 刊物订阅 | 联系我们 | English
基于机器学习的深圳市坝光湿地园树种高光谱分类
投稿时间:2019-06-26  修订日期:2019-07-15  点此下载全文
引用本文:李丹,黄钰辉,孙中宇,张卫强,甘先华,王佐霖,孙红斌,杨龙.基于机器学习的深圳市坝光湿地园树种高光谱分类[J].红外,2019,40(7):47~52
摘要点击次数: 15
全文下载次数: 27
作者单位E-mail
李丹 广东省地理空间信息技术与应用公共实验室 236475484@qq.com 
黄钰辉 广东省林业科学研究院森林培育与保护利用重点实验室  
孙中宇 广东省地理空间信息技术与应用公共实验室  
张卫强 广东省林业科学研究院森林培育与保护利用重点实验室  
甘先华 广东省林业科学研究院森林培育与保护利用重点实验室  
王佐霖 广东省深圳市野生动物救助中心  
孙红斌 广东省深圳市野生动物救助中心  
杨龙 广东省地理空间信息技术与应用公共实验室  
中文摘要:高光谱遥感数据为树种的精细识别提供了可能。为探索高光谱数据在树种识别中的能力,本研究基于深圳市坝光古银叶树群落的8种主要树种叶片高光谱数据,比较了6种光谱预处理方式和2种分类方法对树种分类识别精度的影响,并基于随机森林算法对不同树种识别的特征波段进行了识别。研究结果表明,一阶导数预处理方法在分类识别中性能最好,平均分类精度为76.65%;随机森林回归方法较支持向量回归算法的性能好,模型平均分类识别精度为73.07%。从混淆矩阵可以看出,多毛茜草、银柴、阴香易错分为假萍婆,鸭脚木与银柴易错分,银叶树和细叶榕易错分。400 nm、495 nm、615~675 nm、835 nm、915~975 nm、1035~1065 nm、1085~1135 nm、1265~1275 nm、1425~1535 nm、2040 nm、2100~2270 nm、2430 nm附近的光谱数据与8个树种分类识别有密切关系。
中文关键词:机器学习  树种分类  高光谱  叶片
 
Classification in Baguang Wetland Park in Shenzhen Based on Machine Learning and Hyperspectral Data
Abstract:Hyperspectral remote sensing data provides the possibility for fine identification of tree species. In order to explore the ability of hyperspectral data in tree species identification, this study is based on the leaf hyperspectral data of eight major tree species in the heritiera littoralis community of Baguang, Shenzhen, and compared the performance of six spectral preprocessing methods and two classification methods to classify tree species. Then based on the random forest algorithm, the importance of the each band was evaluated. The results showed that the first derivative preprocessing method had the best performance in classification and identification, and the average classification accuracy was 76.65%. The random forest regression method had better performance than the support vector regression algorithm, and the model average classification recognition accuracy was 73.07%. It can be seen from the confusion matrix that Aidia pycnantha, Aporosa dioica, Cinnamomum burmanni were recoginized as Sterculia lanceolato. There were the misclassification between Scheffero octorphylla and aporosa diocia. And Heritiera littoralis was also misclassified as Ficus microcarpa. Spectral data near 400 nm, 495 nm, 615-675 nm, 835 nm, 915-975 nm, 1035-1065 nm, 1085-1135 nm, 1265-1275 nm, 1425-1535 nm, 2040 nm, 2100-2270 nm, and 2430 nm are identified as the spectral features, which are most important for the classification of eight tree species.
keywords:machine learning  tree species classification  hyperspectral  leaf
查看全文  HTML  查看/发表评论  下载PDF阅读器

版权所有:《红外》编辑部

北京勤云科技发展有限公司