首页 | 杂志简介 | 征稿简则 | 投稿指南 | 常见问题 | 名词解释 | 刊物订阅 | 联系我们 | English
基于迁移学习的红外图像多目标检测技术
投稿时间:2019-06-12  修订日期:2019-06-26  点此下载全文
引用本文:林鸿生,刘文正,汤永涛.基于迁移学习的红外图像多目标检测技术[J].红外,2019,40(7):26~34
摘要点击次数: 20
全文下载次数: 24
作者单位E-mail
林鸿生 海军士官学校 linhs_lhs@163.com 
刘文正 中国人民解放军75833部队  
汤永涛 海军士官学校  
中文摘要:针对用传统方法难以解决城市背景下红外图像多目标检测的问题,采用迁移学习技术把深度学习中可见光域的目标检测框架迁移到红外域中。利用该方法建立的模型的小目标检测性能非常好,在制作的测试集上平均精度mAP(IoU=0.50)为0.858。还对训练数据与模型检测性能之间的关系进行了初步研究。制作了大数据量和小数据量2个训练集,对模型进行训练,然后在相同的测试集上进行测试。通过小数据量训练的模型在制作的测试集上的平均精度mAP(IoU=0.50)为0.615。实验结果表明,数据的多样性、数量、质量等都会影响模型的好坏。
中文关键词:迁移学习  深度学习  红外图像  目标检测  多目标
 
Multi-target Detection Technology in Infrared Image Based on Transfer Learning
Abstract:In order to solving the problem of multi-target detection of infrared image in urban background by traditional methods, migration learning technology is used to migrate the target detection framework of visible light in deep learning to the infrared domain. A model is built by the method. The model''s small target detection performance is very good, and the average precision mAP(IoU=0.50)of the test set is 0.858 on the produced test set. A preliminary study of the relationship between training data and model detection performance was also conducted. Two training sets of large data volume and small data volume were produced, the model was trained, and then tested on the same test set. The average precision mAP(IoU=0.50)of the small data set is 0.615. The experimental results show that the diversity, quantity and quality of the data will affect the quality of the model.
keywords:transfer learning  deep learning  infrared image  target detection  multi-target
查看全文  HTML  查看/发表评论  下载PDF阅读器

版权所有:《红外》编辑部

北京勤云科技发展有限公司