空间生命科学前沿进展综述—微生理系统与多组学技术驱动空间生命科学精准解析
DOI:
CSTR:
作者:
作者单位:

中国科学院上海技术物理研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Review of Frontier Advances in Space Life Science—Microphysiological Systems and Multi-Omics Technologies Driving Precision Analysis
Author:
Affiliation:

Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着载人航天活动迈向深空,空间生命科学已成为研究宇宙环境对生命体影响的核心领域。空间特殊环境因素(如微重力、银河宇宙辐射)对生命体从分子至系统层级均产生显著影响,而传统研究模型与在轨检测技术的局限长期以来制约了对相关机制的深入解析。近年来,微生理系统(包括类器官与器官芯片)与先进在轨检测技术的结合,正在推动空间生命科学研究范式的根本性变革。本文系统综述了微生理系统在模拟人体器官三维结构及生理功能方面的优势,并总结了其在国际空间站等平台中的应用实践,涵盖脑、骨、免疫等多个组织模型的研究进展与关键发现。同时,详细评述了高内涵荧光成像、光片显微镜、拉曼光谱及纳米孔测序等原位检测技术的最新发展,这些技术实现了对空间生物过程的实时、动态与多模态监测。文章还进一步分析了当前领域面临的主要挑战,如技术集成度有限、长效培养体系欠缺以及多模态数据融合不足等,并展望了未来智能化、集成化空间实验平台的建设方向,强调通过多模态传感、人工智能与自动化方法的深度融合,将推动空间生命科学研究迈向多尺度、系统级和精准解析的新阶段。

    Abstract:

    With the advancement of human spaceflight into deep space, space life science has become a pivotal field for studying the effects of the cosmic environment on living organisms. Space-specific environmental factors—such as microgravity and galactic cosmic radiation—exert profound impacts on life across multiple levels, from molecular to systemic. However, limitations of traditional research models and in situ detection technologies have long hindered in-depth mechanistic understanding. In recent years, the integration of microphysiological systems (including organoids and organ-on-chips) with advanced in-orbit detection technologies is driving a fundamental transformation in the research paradigm of space life science. This article systematically reviews the unique advantages of microphysiological systems in mimicking the three-dimensional structure and physiological functions of human organs, and summarizes their successful applications onboard the International Space Station and other platforms, covering research progress and key findings in brain, bone, immune tissue, and other tissue models. Furthermore, it provides a detailed evaluation of recent advances in in situ detection technologies such as high-content fluorescence imaging, light-sheet microscopy, Raman spectroscopy, and nanopore sequencing, which together enable real-time, dynamic, and multi-modal monitoring of biological processes in space. The article also analyzes major current challenges in the field, including limited technological integration, insufficient long-term culture systems, and difficulties in multi-modal data fusion. Finally, it outlines future directions for building intelligent and integrated space experimental platforms, emphasizing that the deep integration of multi-modal sensing, artificial intelligence, and automation will advance space life science into a new era of multi-scale, systematic, and precise analysis.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-28
  • 最后修改日期:2025-11-17
  • 录用日期:2025-11-22
  • 在线发布日期:
  • 出版日期:
文章二维码