2025年4月2日 星期三
首页 | 杂志简介 | 征稿简则 | 投稿指南 | 常见问题 | 名词解释 | 刊物订阅 | 联系我们 | English
基于近红外光谱大数据的井下流体类型 智能识别方法及应用
投稿时间:2025-02-18  修订日期:2025-03-07  点此下载全文
引用本文:
摘要点击次数: 28
全文下载次数: 0
作者单位地址
孔笋* 中海油田服务股份有限公司油田技术研究院 河北省三河市燕郊经济开发区行宫西大街中海油服油田技术研究院
沈阳 中海油田服务股份有限公司油田技术研究院 
余强 中海油田服务股份有限公司油田技术研究院 
褚晓冬 中海油田服务股份有限公司油田技术研究院 
鲍忠利 中海油田服务股份有限公司油田技术研究院 
左有祥 中海油田服务股份有限公司油田技术研究院 
基金项目:测录试关键技术与装备
中文摘要:虽然中海油服成功地研发了井下光谱分析仪,但是在解释方面尚有不足,尤其是在井下光谱数据驱动的实时智能流体识别方面。本文首次提出了光谱测量数据驱动的实时智能流体识别方法。首先基于大量光谱实测数据,建立各种流体的数据库。其次,对数据库中的光谱数据和流体类型分别进行预处理。再次,用主成分分析法对256通道光谱数据进行降维,并选择前10个主成分作为输入变量;流体类型(输出变量)分为5类:气、油、水、钻井液(乳化物或无效测量)、油/气-水混合物。然后,用23种模型进行流体识别建模,主要模型包括:各种树、判别式、支持向量机、K-最邻近法、人工神经网络等。然后,对所有模型进行分析对比,选择最佳模型嵌入地层测试工具中。23种模型训练后的测试精度为78.1% - 99.9%。最佳模型为人工神经网络(精度为99.9%)。最后,再使用40多个测点的光谱数据对最佳模型进行进一步检验。结果表明:最佳模型能准确预测流体类型。新智能识别方法为消除水对油、气光谱的影响,更精确地分析油、气组成奠定了坚实基础。从而降低作业风险及节省作业时间和成本。
中文关键词:数据驱动  井下光谱  智能流体识别  人工神经网络  主成分分析
 
An Intelligent Identification Method and Its Application for Downhole Fluid Types Based on Big Data in Near-infrared Spectroscopy
Abstract:Although COSL has successfully developed downhole optical spectrum analyzers, there are still shortcomings in interpretation, especially intelligent fluid identification driven by downhole spectral data in real time. In this paper, an intelligent fluid identification method driven by spectral data in real time is proposed for the first time. Firstly, based on a large number of measured spectral and fluid data, a database of various fluids is established. The spectral data and fluid types in the database are then preprocessed separately. The spectral data of 256 channels are further reduced by principal component analysis, and the first 10 principal components are chosen as input variables. Fluids are divided into 5 types (output variables): gas, oil, water, slurry (emulsified fluid, or invalid measurement), oil/gas-water mixture. Next, 23 pattern recognition models are used for modeling of fluid identification, including various trees, discriminants, support vector machines, K-nearest neighbor methods, artificial neural networks and so on. All the models are then analyzed and compared, and the best model is selected to be embedded in the formation test tool. The test accuracy of the 23 models after training is 78.1% - 99.9%. The artificial neural network is the best (accuracy of 99.9%). Finally, the spectral data from more than 40 sampling stations are employed to further examine the best model. The results show that the best model can accurately predict fluid types. The new intelligent identification method lays a solid foundation for eliminating the influence of water on the oil and gas spectra and analyzing the composition of oil and gas more accurately, thus reducing operation risks and saving operation time and costs.
keywords:Data-driven  Downhole spectroscopy  Intelligent fluid identification  Artificial neural networks  Principal component analysis
  HTML  查看/发表评论  下载PDF阅读器

版权所有:《红外》编辑部

北京勤云科技发展有限公司