High-precision algorithm for restoration of spectral imaging based on joint solution of double sparse domains
投稿时间:2020-03-16  修订日期:2020-05-12  download
摘要点击次数: 972
全文下载次数: 188
刘世界 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083
中国科学院大学北京 100049 
李春来 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083 200083
徐睿 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083 200083
唐国良 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083
中国科学院大学北京 100049 
吴兵 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083
中国科学院大学北京 100049 
徐艳 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083
中国科学院大学北京 100049
上海科技大学信息科学与技术学院上海 200020 
王建宇 中国科学院上海技术物理研究所空间主动光电技术重点实验室上海 200083
中国科学院大学北京 100049
国科大杭州高等研究院浙江 杭州 310024 
Abstract:Compressed sensing-based spectral imaging systems need to decode the sampled data by a proper algorithm to obtain the final spectral imaging data. Traditional decoding algorithms based on single sparse domain transformation will lead to loss of spectral details. Addressing this problem, a solution is proposed by using transformation of two sparse domains. A signal was decomposed into a low frequency part and a high frequency part, sparse restoration was performed according to the characteristics of different frequencies, and then decoding was performed to obtain high-precision restored signals. In data verification, the OMP algorithm was firstly used to restore the spectral information profile in the frequency domain, then the IRLS algorithm was applied to compensate the spectral details in the spatial domain. The impact of different sparse transformations on parameter settings was analyzed, and the JDSD of different algorithm combinations was tested. Test and simulation results on 500 kinds of spectral data show that the joint solution of double sparse domains can greatly improve the fidelity of spectral restoration. With a sampling rate of 20%, the SAM and GSAM indexes are increased from 0.625 and 0.515 by traditional methods to 0.817 and 0.659, respectively. In the case of 80%sampling rate, the SAM and GSAM indexes are increased from 0.863 and 0.808 of traditional methods to 0.940 and 0.897, respectively. JDSD algorithm can maintain high-precision details such as spectral absorption peaks,which is of great significance.
keywords:Spectral imaging  spectral feature recovery  computational imaging  compressed sensing
  HTML  查看/发表评论  下载PDF阅读器

Copyright:《Journal of Infrared And Millimeter Waves》