A directional thermal radiance model for row crop canopy impact of sensor footprint
Author:
Affiliation:

Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences,Academy of Opto-Electronics, Chinese Academy of Sciences

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The direction of thermal radiance is one of the key problems in thermal infrared remote sensing retrieval and product validation. Aiming at row crop, a directional thermal radiance model is built by considering the sunlit/shaded leaf, sunlit/shaded soil, multiple scattering and field of view. The accuracy and sensitivity of the model are discussed and the results show that the model can not only explain the row crop structure and hot spot effect well, but also be suitable for simulating the thermal radiance of continuous canopy. Compared with the FRA97 and the FovMod model, the directional distributions of directional brightness temperature are in good agreement. The root mean square error is 0.18 K and 0.36 K respectively.

    Reference
    Related
    Cited by
Get Citation

LI Kun, QIAN Yong-Gang, WANG Ning, MA Ling-Ling, QIU Shi, LI Chuan-Rong, TANG Ling-Li, CHEN Zhi-Ming, WANG Guo-Zhu. A directional thermal radiance model for row crop canopy impact of sensor footprint[J]. Journal of Infrared and Millimeter Waves,2018,37(5):599~607

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 10,2018
  • Revised:February 14,2018
  • Adopted:March 05,2018
  • Online: October 31,2018
  • Published: