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A convolution approach for the epilayer thickness
in liquid phase epitaxial growth
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Academy of Sciences，Shanghai 200083，China）
Abstract：The relation between the film thickness and the growth conditions in the liquid phase epitaxy（LPE）
process is discussed. A convolution approach for the thickness is developed on the assumption that the growth rate
is determined by the solute diffusion process. Using this convolution expression，the relations between thickness，
growth time and cooling rate can be obtained for various LPE techniques. Moreover，the convolution algorithm
can also be used to deal with some complex growth conditions，such as nonuniform cooling rate，nonlinearity of
the liquidus curve and the finite growth solution.
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液相外延生长过程中外延层厚度的卷积计算方法

魏彦锋*， 孙权志
（中国科学院上海技术物理研究所 红外成像材料与器件重点实验室，上海200083）

摘要：讨论了液相外延生长过程中外延层厚度与生长条件的关系。在生长速率决定于溶质扩散的前提下，推

导出了外延层厚度的卷积表达式。利用这一表达式，可以得出不同液相外延工艺中外延层厚度与生长时间、
冷却速率的关系。并且，外延层厚度的卷积算法可以应用于更为复杂的生长条件，例如：非均匀的降温速率、
非线性的液相线形状以及有限的生长溶液等。
关 键 词：生长模型；扩散；液相外延
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Introduction
As a mature technique for the growth of semiconduc⁃tor films，Liquid Phase Epitaxy（LPE）has been widelyused to grow III-V and II-VI semiconductor materials. Inthe LPE process，a substrate is inserted into the saturat⁃ed solution and then the temperature of the system de⁃creased while the solute crystallizes and deposits on thesubstrate to form a film. The thickness is the fundamen⁃tal parameter of the film. Compared to Vapor epitaxymethods（MBE，MOCVD，etc.），it is usually difficultto monitor the thickness directly in the LPE process be⁃cause the temperature of the growth solution is quite highand the growth crucible is opaque. So，it is essential tocontrol the growth conditions carefully to obtain a de⁃signed film thickness.

Some factors that affect the epilayer thickness in⁃clude the growth temperature，the growth time，the cool⁃ing rate，the Solid-Liquid phase diagrams，and so on. Itis important to reveal the relation between the film prop⁃erties and these factors. In the early study［1］，a diffusionequation was set up to describe the LPE process and itwas demonstrated that the growth rate was mainly decid⁃ed by the diffusion of the solute. An analytical solutionwas derived to describe the relation between the growthparameter and the growth rate in the semi-infinite bound⁃ary conditions. Henry T. Minden investigated the detailsof the phase diagram and gave the solution of the diffusionequation in semi-infinite and bounded conditions［2］. Thequestion of constitutional supercooling was also present⁃ed in his study. R. L. Moon also studied the influence ofthickness of growth solution on the LPE layer thickness
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and constitutional supercooling［3］. Assuming the equilib⁃rium concentration followed an Arrhenius law，RichardGhez obtained an exact expression of the growth rate inunbounded condition［4］. Muralidharan and S. C. Jain de⁃rived a more accurate solution of the diffusion equation ina solution with finite thickness and pointed out the dis⁃crepancy between the theory and the experiments wascaused by the temperature variations of the diffusion coef⁃ficient of the solute［5］. Crossley studied the LPE processusing numerical method which was in principle adaptedto various boundary conditions and cooling process［6-8］.Besides these theoretical approaches，R. L. Moon，J.Kinoshita and J. J. Hsieh investigated the LPE of GaAsand compared the differences between the experimentsand the theory［9-10］. Their results demonstrated the epitax⁃ial thickness calculated from the diffusion equation con⁃sisted with the experimental data. In the later stud⁃ies［11-15］，the numerical simulation methods were widelyused due to the improvement of the computational abili⁃ty. The contents investigated extended to 2-D，3-D andternary alloy system. Meanwhile，the computational flu⁃id method was adopted to study the influence of the meltconvection on the epitaxial process.These studies were mostly based on the diffusion-limited model. The driving force of growth is the constitu⁃tion gradient caused by the solute deposition in the cool⁃ing process. A constant cooling rate was mostly adoptedin the theoretical models ［2-5，9-10］. In their experiments，B. L. MOON and J. KINOSHITA ［9］observed the dis⁃crepancy between the experimental data and the theoreti⁃cal prediction. They ascribed these to the enhancedgrowth rate in the beginning of growth or thermal inertiaof the growth furnace. In the LPE process，it is actuallydifficult to keep a constant cooling rate due to the ambi⁃ent influence. The cooling rate will fluctuate around anaverage value，especially in a long-time growth process
（one hour or more）. For this nonuniform cooling rate，the numerical method is preferred. However，an analyti⁃cal model is more explicit and intuitive in the physicalsense compared to the numerical method. In this paper，a convolution expression relating the film thickness to thegrowth time is derived based on the diffusion-limitedmodel. The convolution algorithm could deal with bound⁃ed or unbound growth solution，nonuniform cooling rate，nonlinearity of the liquidus curve，and so on.
1 Theory

Assuming the thickness of the solution is L，the ori⁃gin locates in the solid-liquid interface and the positive xdirection points to the liquid，the LPE process could bedescribed with the following diffusion equation，bound⁃ary，and initial conditions.［1］Diffusion equation：∂C ( x,t )
∂t = D ∂2C ( x,t )∂x2 . （1）

Initial condition：
C (x,0) = C0 . （2）

Boundary condition：

{ C ( )0,t = Cl ( )t
∂C ( x,t )
∂x |x = L = 0 . （3）

With the semi-infinite growth solution，L → ∞，theboundary condition Eq. 3 changes toBoundary condition：
{C ( )0,t = Cl ( t )
C ( )∞,t = C0 . （4）

Referring to Fig. 1，C ( x，t )is the concentration of
the solution at the coordinates x and the time t，D is thediffusion coefficient of the solute，C0 is the concentrationof the initial solution，T0 is the equilibrium temperaturecorresponding to C0，Tl ( t ) is the temperature on the solid-
liquid interface at time t. Assuming the solid-liquid two-phase keep equilibrium at the interface，Cl ( t ) is then thesolute concentration corresponding to Tl ( t ) on the liqui⁃dus. In appendix A，a Laplace transform method is usedto solve the Eqs. 1-4 and the relation between the epilay⁃er thickness and the growth time is obtained. Althoughthe solving process is similar to that of in Refs.［2，9-10］except the developing of the convolution expression，adetailed derivation is given for the sake of clarity.
2 Discussion

In appendix A，the relation between the epilayerthickness and the growth time in the semi-infinite solu⁃tion condition is given by
d (t) = 1

Cs

∙ D
π ∙

1
t
*[C0 - Cl (t) ] . （5）

The symbol * in Eq. 5 is the convolution operator.So，the epilayer thickness is proportional to the convolu⁃tion of the reciprocal of the square root of time and the
“constitutional supercooling”. For different growth pro⁃cess，“constitutional supercooling”may have differentform. J. J. Hsieh［10］classified the LPE process into fourtypes which are Step-cooling，Equilibrium-cooling，Su⁃per-cooling and Two-phase solution technique. For thefirst three techniques，the relation between the epilayerthickness and the growth time can be described by thediffusion-limited model.For the Equilibrium-cooling technique，the coolingrate α is a constant. Assuming the slope of liquidus is al⁃

Fig. 1 The schematic phase-diagram used in the LPE growth model
图1 液相外延生长模型中所采用的相图的示意图
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so a constant m， it is obvious that C0 - Cl (t) =
T0 - Tl ( )t

m
= αt
m
. So，

d (t) = 1
Cs

∙ D
π ∙

1
t
* (αtm ) = 43∙ 1

Csm
∙ D

π ∙α∙t
3
2 .（6）

For the Step-cooling technique，the degree of the su⁃
percooling ∆ is a constant and C0 - Cl (t) = ∆m . So，
d (t) = 1

Cs

∙ D
π ∙

1
t
*[C0 - Cl (t) ] = 1

Cs

∙ D
π ∙

1
t
*

( ∆m ) = 2
Csm

∙ D
π ∙∆∙ t . （7）

For the supercooling technique， C0 - Cl (t) =∆ + αt
m

. So，
d (t) = 2

Csm
∙ D

π ∙(2∙∆∙ t + 43∙α∙t
3
2 ) . （8）

Equations 6-8 consist with those derived in Ref.
［10］. For the widely used Equilibrium-cooling tech⁃
nique，the thickness is proportional to the time t 32 whichmeans the growth rate of film increases gradually withtime. It is possible to design a special cooling process inwhich the growth rate will be a constant. According toEq. 5，if the decrease of temperature is proportional to
t1 2，the film thickness will be proportional to time t. Insuch cooling process，the growth rate is a constant whichmay benefit the uniformity of film and the simplicity ofoperation.As for the two-phase-solution technique，the pro⁃cess deviates from equilibrium and the deposition will oc⁃cur on both the substrate and the precipitates［10］. The dif⁃fusion-limited model is not applicable for the two-phase-solution process.Moreover，in appendix A，the epilayer thickness onthe bounded solution condition is also obtained. On suchconditions，the epilayer thickness is a sum of infinite se⁃ries as described by Eq. A19. Supposing Cl ( t ) = C0 -
αt
m

，then the epilayer thickness can be calculated，

d (t) = α
Csm

∙
é

ë

ê

ê

ê
êê
êLt + 2L3
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è
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ç
ç
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ç∑
n = 0

∞ e- DL2 (n + 12 )2π2 t
(n + 12 )4π4
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ù

û

ú

ú

ú
úú
ú .（9）

This result consists with that of obtained in Ref.
［3］. So，Eq. 5 is a general one which can be simplifiedto various forms under different conditions.As mentioned above，it is difficult to maintain a con⁃stant cooling-rate α in a real growth process. The cooling-rate α will change slightly during the cooling process.According to Eq. 6，we should get a straight line passingthrough the origin if we make a curve of d (t) versus t3 2.
However，the line did not always pass through the originin the experiments. R. L. Moon etc. ［9］ have observedthis phenomenon. They thought the intercept would be

positive if the growth rate was fast at the beginning ofgrowth，while a negative intercept would occur if thecooling rate is small at the beginning due to the thermalinertia of the furnace. This non-uniform cooling processcan be manipulated using Eq. 5. Assuming the slope ofliquidus is a constant m，the degree of supercooling is
Tsc ( t ) = T0 - Tl (t) = [C0 - Cl (t) ]∙m. Then，from Eq.
5，we can get：

d (t) = 1
Csm

∙ D
π ∙

1
t
*Tsc ( t ) . （10）

Numerically，the growth time t is divided into N
equal parts and the interval is t

N
for each part. The mid⁃

point of each time interval is ti ( i = 1，2…N ). The de⁃gree of supercooling at moment ti is Tsc (ti). According to
Eq. 10 and the definition of convolution，we get，

d (t) = 1
Csm

∙ D
π
∙{∑i= 1N Tsc ( )ti

t - ti }∙ tN . （11）

In the above expression，ti and Tsc (ti) are both mea⁃
surable values. So，for this non-uniform cooling process，the numerical solution of the partial differential equation
（PDE）is simplified to an algebraic sum.

As an example，the relationship between the tem⁃perature and the growth time in a HgCdTe LPE is shownin Fig. 2. The circle-solid line is the measured tempera⁃ture. The decrease of the temperature is 6. 5 ℃ duringthe growth time of 63. 5 minutes. The average cooling-rate is α = 0.102℃/minute. The dashed straight line is asupposed ideal cooling curve with a slope of 0. 102℃/minute. A deviation exists between these two curveswhich illustrates the cooling-rate is not a constant. Themaximum deviation is about 0. 5℃. The cooling-rate issmall at the beginning，and it will change slightly duringthe whole growth process. If we suppose that the cooling-rate α keeps constant as 0. 102℃/minute in the growthprocess，we could get an epilayer thickness d1 accordingEq. 6. Meanwhile，we can also calculate the thickness
d2 by adopting the real cooling curve in Fig. 2 andEq. 11. Finally，we get

Fig. 2 The relation between temperature and the time in a LPE
process
图2 液相外延生长过程中温度随时间的变化关系
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d2
d1
=
1
t
*Tsc ( t )

4
3 ∙α∙t3 2

=
{ }∑
i= 1

N Tsc ( )ti
t - ti ∙

t
N

4
3∙α∙t3 2

= 0.93 .（12）

The above result means the real thickness will besmaller than the value calculated by Eq. 6，the deriva⁃tion of the thickness is about 7%. In Fig. 2，the real cool⁃ing curve is above the ideal cooling curve and takes a
“convex”shape. This convex feature results in d2 < d1.If the real cooling curve is“concave”，the curve will beunder the ideal cooling curve. Following the same calcu⁃lation method，we will get d2 > d1.

In the LPE process illustrated in Fig. 2，we can alsocalculate the thickness variation with time according toEq. 11. The calculated results are shown in Fig. 3. InFig. 3，the x-axis is the 3/2 power of time and the Y-axis
is the nominal thickness in which assuming 1

Csm
∙ D

π
=

1. The dashed-line is to guide the eyes. It can be seenthe plot of the thickness versus t3 2 is approximately astraight line except the first few data points. This straightline does not pass through the coordinate origin and givesa negative intercept. This result consists with that of ob⁃tained in Ref.［9］.In the more general situation，the slope of the liqui⁃dus is not a constant. Cl may be a function of tempera⁃ture T，Cl = Cl (T ). If the relation between temperature
T and time t is T = T ( t )，Cl can be expressed as a func⁃tion of time t，Cl = Cl (T ( t ) ). For instance，Henry T.Minden ［2］ had supposed the relation between the soluteconcentration and the time near the solid-liquid interface
is Cl (t) = C0e-

t
τ. Using Eq. 5，we get

d (t) = 1
Cs

∙ D
π ∙

1
t
*[C0 - Cl (t) ] = 2C0Cs

∙ D
π ∙[ t -

τ∙F ( t τ ) ] , （13）
where F ( t τ ) is the Dawson function，F ( t τ ) =
e-t/τ∙∫0 t τ ey2dy.

3 Conclusions
The liquid phase epitaxy（LPE）process can be de⁃scribed by the diffusion-limited model. The convolutionexpression deduced in this study can deal with the threeLPE techniques，namely step-cooling，equilibrium-cool⁃ing and supercooling. For the nonuniform cooling pro⁃cess，we compared the difference between the convolu⁃tion calculation and the simply-model（uniform cooling-rate）calculation. The result shows there is a quite differ⁃ence between these two methods which should be consid⁃ered in the real LPE process. Moreover，by adopting thephase diagram data，the epilayer thickness could be pre⁃dicted which is helpful to the control of LPE process.

Appendix A:
The control equation for the one-dimension diffusionprocess in a finite solution can be written as：Diffusion equation：∂C ( x,t )

∂t = D ∂2C ( x,t )∂x2 . （A1）
Initial condition：

C ( x,0 ) = C0 . （A2）
Boundary condition：

ì

í

î

ïï
ïï

C ( )0,t = Cl ( t )
|
|
||

∂C ( x,t )
∂x

x = L
= 0 , （A3）

where Cl ( t ) is the solute concentration at the growing in⁃terface and L is the thickness of the solution.Let f ( )x，t = C ( x，t ) - C0，the Eqs. A1-A3 become
∂f
∂t = D

∂2 f
∂x2 , （A4）

f ( x,0 ) = 0 , （A5）
ì

í

î

ïï
ïï

f ( )0,t = Cl ( t ) - C0
|
|
||

∂f ( x,t )
∂x

x = L
= 0 . （A6）

The Laplace transform method is used to solve
（A4）-（A6）.

The Laplace transform of f ( )x，t is ~f ( )x，p =
L [ f ( x，t ) ]，Eq. A4 becomes

p ~f ( x,p ) - f ( x,0 ) = D ∂2
~f ( x,p )
∂x2 . （A7）

Boundary condition（A6）becomes
ì

í

î

ïï
ïï

~f ( )0,p = L [Cl ( t ) - C0 ]
|

|
||

∂ ~f ( x,p )
∂x

x = L
= 0 . （A8）

Solving the differential Eqs.（A7）-（A8）leads to
~f ( )x,p = cosh ( p/D ·( x - L ) )

cosh ( p/D ·L ) ·L [Cl ( t ) - C0 ] . （A9）
Taking the inverse Laplace transform of（A9）leads

Fig. 3 LPE layer thickness versus 3/2 power of growth time.
图3 液相外延层厚度与生长时间的3/2次方的关系。
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to
~f ( )x,t = L -1

é

ë
ê
ê

ù

û
ú
ú

cosh ( p/D ·( x - L ) )
cosh ( p/D ·L ) ∗ [Cl ( t ) - C0 ]

, （A10）
where * represents the convolution operator. The convo⁃lution between two functions u（t）and v（t）is defined as：

u ( t )∗v ( t ) = ∫0t u (τ )·v ( t - τ )dτ . （A11）
So，the differential of C（x，t）at x=0 is
|
|
||

∂c ( x,t )
∂x

x = 0
= |

|
||

∂f ( x,t )
∂x

x = 0

= L -1 é

ë
êê

ù

û
úú

p
D
· tanh ( p/D ·L ) ∗[C0-Cl ( t )]

. （A12）
The thickness of the film can be expressed as

d ( t ) = 1
Cs
∫0t D éëê ù

û
ú

∂C ( x,τ )
∂x

x = 0
dτ , （A13）

where Cs is concentration in the solid.Substituting（A12）into（A13）yields
d( t ) = D

Cs
∫0t { }L -1 é

ë
êê

ù

û
úú

p
D
· tanh ( p/D ·L ) ∗ [C0 - Cl ( t ) ] dτ

. （A14）
Taking the Laplace transform of（A14）leads to

L [ d ( t ) ] = D
Cs

· 1
p
· tanh ( p/D ·L )·L [C0 - Cl ( t ) ]

. （A15）
Then taking the inverse Laplace transform of

（A15），we can obtain
d ( t ) = D

Cs

·L -1 é

ë
ê
ê

ù

û
ú
ú

1
p
· tanh ( p/D ·L ) ∗ [C0 - Cl ( t ) ]

. （A16）
If the solution is semi-infinite，L→ ∞ ，tanh

（ p/D ·L）→1，eq.（A16）becomes
d ( t ) = D

Cs

L -1 é

ë
ê
ê

ù

û
ú
ú

1
p
∗ [C0 - Cl ( t ) ]

= 1
Cs

· D
π ·

1
t
∗ [C0 - Cl ( t ) ] . （A17）

If the solution is bounded，we need simplify the in⁃verse Laplace transform in（A16）which is

L -1 é

ë
ê
ê

ù

û
ú
ú

1
p
·tanh ( p/D ·L ) . （A18）

The residue theorem is used to calculate（A18）. Theresidue of the pole at p=0 is just zero. The poles due to the
hyperbolic tangent function in（A18）is pn = - DL2（n+

1
2）2π2.

The residues of the poles pn are∑n = 0
∞ e- DL2 (n + 12 )2π2 t.

So，the thickness of the film in bounded solution is
d ( t ) = 1

Cs

· 2D
L { }∑n = 0

∞ e- DL2 (n + 12 )2π2 t ∗ [C0 - Cl ( t ) ] .（A19）
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