Nonlocality-induced polarization beam splitting via metal-dielectric composites

WANG Dun-Jian, LI Su-Cheng, JI Wen-Jie, XIONG Wei, SHANG Yuan-Fang, LUO Jie

1. School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2. Shenzhen Kuan-Ghi Institute of Advanced Technology, Shenzhen 518000, China; 3. Shenzhen Kuan-Ghi Cutting-edge Technology Co., Ltd, Shenzhen 518000, China; 4. State Key Laboratory of Meta-RF Electromagnetic Modulation Technology, Shenzhen 518000, China

Abstract: Three kinds of polarization beam splitters are designed by using a simple metal-dielectric multilayered structure with strong nonlocality. It is found that the equal frequency contour for the transverse electric polarization is a small circle when the average permittivity is close to zero. At the same time, the equal frequency contour for the transverse magnetic polarization turns to be two branches of parabolas due to the surface plasmon-induced non-local effect. Based on the dramatic difference between dispersions of the two polarizations, three kinds of polarization beam splitters are demonstrated, including the ultrathin ones, which may have important applications in polarization-sensitive absorbers and compact optical devices.

Key words: nonlocality, polarization beam splitters, zero-index media, metal-dielectric composites

PACS: 41. 20. Jb, 78. 20. Cl, 73. 20. Mf

Introduction

Metamaterials composed of subwavelength microstructures generally can be homogenized to effective media characterized by local effective parameters, i.e., without spatial dispersion. However, interestingly, the effective parameters of some metamaterials containing metallic components are found to be nonlocal, i.e., spatially dispersive, even when the microstructures are in deep-subwavelength scale. Therefore, traditional effective medium theories (EMTs) predicting the local effective parameters fail to homogenize such metamaterials. As we know, the traditional EMTs usually require relatively uniform fields inside and between the microstructures. But in metallic structures, surface plasmons may be excited, resulting in drastically varying fields inside and between the microstructures. As a conse-
quence, the nonlocality may appear in the effective parameters, thick brings rich and colorful effects and applications beyond the local framework of metamaterials. In particular, the nonlocality becomes even stronger in the zero-index media with the permittivity or/and permeability near zero \cite{20,28,32,34}, yielding unique properties and applications like parabolic dispersion \cite{20,21}, additional extraordinary waves \cite{24,25} all-angle negative refraction and subwavelength imaging \cite{23}, etc.

On the other hand, polarization beam splitters (PBSs), which separate two orthogonal polarizations of light into different propagation directions, are very important and widely used in polarization manipulation, optical communication, data storage, image processing and display. Traditional PBSs are based on either Brewster effect or natural crystal birefringence, which requires a large thickness to obtain enough walk-off distance between the two polarizations as the birefringence of a natural material is always small\cite{35}. With the development of photonic crystals, metamaterials and metasurfaces, novel methods have been proposed\cite{35,55}. For instance, based on photonic crystals, polarization-dependent dispersions\cite{35,37,40} or bandgaps at different wavelength range for two polarizations\cite{44,45} can be achieved to split transverse electric (TE) and transverse magnetic (TM) polarizations. The strong anisotropy in metamaterials can mitigate the design of PBSs\cite{47,48}. Gradient metasurfaces can introduce different additional phases to different polarizations to separate the two polarizations\cite{49,50}. In addition, broadband PBSs and polarization rotators can be realized based on multiwave interference in multilayered meta-grating structures\cite{53,54}.

In this paper, we propose to use a simple metal-dielectric multilayered structure with nonlocal effects to realize three kinds of PBSs. We find that when the average permittivity of the multilayer is near zero, the nonlocal effect become dramatic. This leads to a great difference in dispersions of TE and TM polarizations, enabling the separation of two polarizations.

1 Dispersions and polarization beam splitters

To begin with, we investigate the dispersions of metal-dielectric multilayered structure, as illustrated in Fig. 1(a). Such a multilayer is a periodic stacking of metal and dielectric layers with a lattice constant of \(d\). Based on the transfer matrix methods, the dispersions for TE and TM polarizations can be, respectively, expressed as:

\[
\cos(k_a) = \cos(f_{p,a} a) \cos(f_{q,a} a) - \frac{1}{2} \left(\frac{p_a}{q_a} - \frac{q_a}{p_a} \right) \sin(f_{p,a} a) \sin(f_{q,a} a),
\]

(1)

and

\[
\cos(k_a) = \cos(f_{p,a} a) \cos(f_{q,a} a) - \frac{1}{2} \left(\frac{e_{p,q}}{e_{p,q}} - \frac{e_{q,p}}{e_{q,p}} \right) \sin(f_{p,a} a) \sin(f_{q,a} a),
\]

(2)

where \(p_a = \sqrt{\epsilon_a k_0^2 - q_a^2}\), \(q_a = \sqrt{k_0^2 - \epsilon_a k_0^2}\). \(k_0 = \frac{2\pi}{\lambda_0}\) and \(\lambda_0\) are the wave number and wavelength in free space, respectively. \(e_{p,a}(f_{p})\) and \(e_{q,a}(f_{q})\) are the relative permittivity (filling ratio) of the dielectric and metal layers, respectively. Here we have the relation \(f_{p} + f_{q} = 1\).

![Fig. 1](image)

(a) Schematic of the first kind of PBS. (b) The EFs for TE (blue lines) and TM (green lines) polarizations. (c) Amplitude of electric fields for TE (left) and TM (right) polarized waves under normal incidence when the relative permittivity of metal is \(\epsilon_{a,b} = -2\), \(\epsilon_{a,b} = -2 + 0.2i\). The thickness of the multilayered structure is \(w = 0.2a\). (d) The distribution of amplitude of electric fields along the dashed lines in (c) for TE (solid lines) and TM (dashed lines) polarizations when the thickness is set to be \(w = 0.15a\) (blue lines), \(w = 0.20a\) (red lines) and \(w = 0.25a\) (black lines). (e) The distribution of amplitude of electric fields along the dashed lines in (c) for TE (solid lines) and TM (dashed lines) polarizations when the relative permittivity of metal is \(\epsilon_{a,b} = -2\) (blue lines), \(\epsilon_{a,b} = -2 + 0.02\) (red lines) and \(\epsilon_{a,b} = -2 + 0.2i\) (black lines). The relevant parameters are \(\epsilon_{d} = 6, f_{a,b} = 0.75\) and \(a = \lambda/6\).
Assuming that the lattice constant is much smaller than the working wavelength, thus, the trigonometric functions in Eqs. (1-2) can be simplified by using the relation $x \approx x$ and $\cos x \approx 1 - \frac{1}{2!} x^2$. Then, Eqs. (1-2) are reduced to,

$$k_0^2 + k_i^2 = \varepsilon_x k_0^2,$$

and,

$$\frac{k_0^2}{\varepsilon_x} + \frac{k_i^2}{\varepsilon_i} = k_i^2,$$

where $\varepsilon_x = \varepsilon_2(\varepsilon_x + \varepsilon_{\nu n})$ and $\varepsilon_i = \varepsilon_2/1/2(\varepsilon_2 + \varepsilon_{\nu n})$ are the average permittivities in the xz plane and y direction, respectively. Actually, they correspond to the local effective parameters predicted by traditional EMTs.

In particular, if $\varepsilon_i = 0$, then Eqs. (1-2) indicate that the equal frequency contours (EFCs) of TE and TM polarizations are a point and a line, respectively. Evidently, they are not physical. In fact, in the case of $\varepsilon_i = 0$, one higher order term of the trigonometric functions should be considered, i.e. $\sin x \approx x = \frac{1}{3!} x^3$ and $\cos x \approx 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4$. Thus, Eqs. (1-2) are rewritten as,

$$k_0^2 + k_i^2 \approx \frac{a f_0^2}{24} \varepsilon_x (k_0^2 + k_i^2) = \frac{a^2}{12} [j_i^2 + j_n^2 + 4 f_n (f_i^2 + f_n^2)] k_0^2,$$

and $k_i = \pm \frac{a f_0^2}{24} \varepsilon_x \left(k_0^2 - k_i^2 \right) / \varepsilon_i$.

Equations (5-6) indicate that the EFCs of TE and TM polarizations, respectively, are a small circle and two branches of parabolas (see Fig. 1(b)), which are quite different from those obtained from Eqs. (3-4). This reveals that the traditional EMTs fail to describe the multilayered structure with ε_i, and the effective parameters are not local any more. Especially for the TM polarization, the dispersion is drastically different from the local one, which actually is caused by the strong nonlocality induced by the surface plasmons at metal/dielectric surfaces.

In the numerical calculations, the relevant parameters are $\varepsilon_x = 6$, $\varepsilon_i = -2$, $f_n = 0.75$ and $a = \lambda/6$. From the EFCs in Fig. 1(b), we can see that TE polarized waves under normal incidence onto the yz plane of the multilayered structure can be transmitted, while TM polarized waves would be reflected due to the bandgap, as illustrated in Fig. 1(a). Bases on such a difference, TE and TM polarizations can be separated. Thus, one kind of PBSs can be realized.

To verify such PBSs, numerical simulations are performed by using finite-element software COMSOL Multiphysics. In the left and right figures of Fig. 1(c), TE and TM polarized waves are normally incident on the x direction onto the multilayered structure, whose thickness is $w = 0.20\lambda$, 20λ in the x direction. The amplitude of the incident electric field is 1 V/m. The simulation results show that most TM polarized waves can propagate through the multilayered structure, while TE polarized waves are mostly reflected. Furthermore, in Fig. 1(d), we plot the amplitude of electric fields for TE (solid lines) and TM (dashed lines) polarizations along the dashed lines in Fig. 1(c). It is seen that the transmission decreases as the increase of the thickness of the multilayered structure. And the transmission contrast of the two polarizations can be enlarged by the increasing thickness to block the TM polarization. For example, when the thickness is increased to $w = 0.25\lambda$, the transmission coefficient for the TM polarization is around 0.1 (see Fig. 1(d)). On the other hand, the loss of transmission for the TE polarization is mainly due to the impedance mismatch between air and the multilayered structure, which can be relieved by using appropriate antireflection coatings.

Moreover, we consider material loss effects on the performance of the PBS. In Fig. 1(e), we re-simulate the distributions of electric-field amplitudes under both TE (left inset) and TM (right inset) polarizations when the relative permittivity of the metal component is set to be $\varepsilon_{\nu n}$. Compared with Fig. 1(c), we can see that although the transmission is decreased a bit due to material losses, the transmission contrast of the two polarizations is still quite large. In Fig. 1(f), we plot the electric-field amplitudes along the dashed lines in Fig. 1(e) for TE (solid lines) and TM (dashed lines) polarizations when the relative permittivity of metal component is $\varepsilon_{\nu n}$ (blue lines), (red lines) and (black lines). These results reveal that the PBS can still work well in the existence of material losses.

It is worth noting that the thickness of such a PBS is much smaller than the working wavelength, as we have shown above. Such an ultrathin PBS may be more useful in compact optical devices compared with the previously proposed PBSs.

Now, we rotate the multilayered structure, so that the waves are incident onto the plane. Then, we can get different refractive behaviors of the two polarizations, as illustrated in Fig. 2(a). Such a difference in the refractive behaviors enables another kind of PBSs. Therefore, we can obtain different kinds of PBSs by using the same multilayered structure when waves are incident on the different surfaces.

Specifically, positive and negative refractions occur for the TE and TM polarizations, respectively, as seen from the EFCs in Fig. 2(b). The arrows denote the directions of group velocities of incident and refracted beams. Simulation results under an incident angle of 10 deg are presented in Fig. 2(c), showing positive refraction for the TE polarization (left) and negative refraction for the TM polarization (right). In Fig. 2(c), the color (arrows) denotes the magnitude (direction) of the time-averaged power flow. We notice that almost all the incident waves are transmitted through the multilayered structure irrespective of the polarizations. Moreover, in Fig. 2(d), we plot the time-averaged power flow along the dashed lines in Fig. 2(c). The solid and dashed lines in Fig. 2(d) denote the lossless case with and the lossy case with , respectively. We can clearly see a large walk-off distance in the direction for the two polarizations, thus making it possible to separate the two polarizations. We note that such a walk-off distance can be further enlarged by increasing the thickness of the multilayered structure, or increasing the incident angle.
Fig. 2 (a) Schematic of the second kind of PBS. (b) The EFCs for TE (blue lines) and TM (green lines) polarizations. (c) Snapshots of the magnitude (color) and direction (arrows) of the time-averaged power flow for TE (left) and TM (right) polarized waves under an incident angle of $\theta = 10$ deg. The multilayered structure is composed of 5 unit cells and an additional metal layer. (d) The distribution of time-averaged power flow along the dashed lines in (c) for TE (blue lines) and TM (green lines) polarizations. The solid and dashed lines in (d) denote the lossless case with $\varepsilon_n = -2$ and the lossy case with $\varepsilon_n = -2 + 0.02i$, respectively. The relevant parameters are the same as those in Fig. 1.

The above two kinds of PBSs are based on the separated parabolic dispersion of the TM polarization. Interestingly, the two branches of parabolas can be tuned to be crossed. In Fig. 3, we show that based on the crossed parabolic dispersion, a new kind of PBSs can be achieved. Figure 3(a) illustrates the designed PBS, showing that the normally incident TE polarized waves will propagate through the multilayered structure without reflection. On the other hand, the TM polarized waves split into two beams having symmetric span angles around surface normal. Therefore, the propagation directions of the two polarizations are separated in the simple multilayered structure. The mechanism of the beam splitting for the TM polarization relies on the crossed parabolas (Fig. 3 (b)) as the result of surface plasmon-induced nonlocal effect. This means that this kind of PBS is unique and not realizable in metamaterials described by local parameters.

Simulation results are presented in Fig. 3 (c), in which the left and right figures correspond to the TE and TM polarizations, respectively. The color (arrows) denotes the magnitude (direction) of the time-averaged power flow. The relevant parameters are $\varepsilon_T = 1$, $\varepsilon_m = -4$, $f_m = 0.2$ and $a = \lambda/8$. It is clearly seen that the TE polarized waves can propagate through the multilayered structure ($\varepsilon_T = 1.6\lambda$) without splitting, while the TM polarized wave are symmetrically split into two beams. As a result, there is a wall-off distance in the y direction for the transmitted TE and TM polarized beams, as demonstrated by the distributions of the time-averaged power flow in Fig. 3 (d), in which the solid and dashed lines denote the lossless case with $\varepsilon_n = -4$ and the lossy case with $\varepsilon_n = -4 + 0.04i$, respectively. Here, the transmission of this kind of PBSs is not quite high due to the impedance mismatch and material losses, which actually can be relieved by using antireflection layers [56-58] and optical gain media [59-60].

Finally, we note that all the proposed PBSs in the above can be realized in practice. For instance, in 2012, Subramania et al. fabricated a Ag-TiO$_2$ multilayered...
structure with a near-zero average permittivity in the optical regime. After this work, similar multilayered structures have been fabricated by exploiting Ag and SiN layers, Au and SiO2 layers, Ag and SiO2 layers. These experimental investigations manifest that practical implementation of the proposed PBSs is realizable.

2 Conclusions

In summary, we have proposed three kinds of PBSs by using metal-dielectric multilayered structures based on different dispersions of TE and TM polarizations. The surface plasmon-induced nonlocality results in parabolic dispersion for the TM polarization when the average permittivity is near zero. Interestingly, the designed PBSs can be ultrathin, which may have important applications in compact optical devices.

Acknowledgement

This work is supported by the Shenzhen Science and Technology Plan (Grant No.: JSGG20160819150017627, JSGG20160819150000459). Dunjian Wang, Sucheng Li and Wenjie Ji contributed equally to this work.

References

