Enhanced optical transmission based on the electric field enhancement effect in a compact metal-dielectric double-layered films

ZHONG Min*
(Hezhou University, Hezhou 542899, China)

Abstract: Transmission enhancement is simulated verification based on a non-hollowing double layer of metamaterial filter. The proposed structure contains a continuous metallic film covering on a continuous dielectric layer. The simulated transmission is enhanced obviously comparing the single metal layer structure. Effects of the dielectric layer thickness and the incident angle on the transmission enhancement are simulated verification. It is found that the maximized transmittance enhancement is achieved when the thickness h_1 is 20 nm. Moreover, the proposed compact metal-dielectric double-layered films shows a stability of transmittance enhancement when the incident angle reaches to 45° which can be applied in many potential fields due to its non-hollowing design strategy.

Key words: metamaterials; transmission; absorption

PACS: 41. 20. Jl; 78. 20. Cj; 73. 20. Mf; 42. 25. Bs

Introduction

Metamaterials have many unique properties such as negative permeability, refractive index and permittivity etc. Metamaterials are used in multiple fields including sub-diffraction imaging, optical black hole and so on. Among these applications, metamaterial filter is a research hotspot. Researchers have proposed a series of ways to enhance the transmittance of metamaterial filters. Krishnan A experimental confirm the optical transmission enhanced due to the interaction between the incident light and surface plasmon modes. Lanju L design and simulate a wideband band-pass terahertz filter based on stacking metal and material layers alternately. Lei W adopts a simplified design strategy that designing and experimental preparing a low-pass filter in the terahertz regime with a single metal layer covering on a single chip. In addition to optimizing the design strategy another way to improve the transmission properties of metamaterial filters is to obtain impedance matching. These reported results indicate that adopting structured design strategies to enhance transmission is a popular research method currently. However, this method always results in a complex targeted structure and an increase in requirements of the production equipment which is not conducive to large-scale production as well as to reduce costs. On the other hand, the unstructured
design strategy is a novel but unconcerned research method. This unstructured design strategy is to stack thin different materials films together to form a multilayer film structure. This structural design strategy has the following advantages: (a) the complicated production equipment is not required; (b) mass production; and (c) cost reduction. Therefore, unstructured multilayer film structure is worth studying.

In this paper, a material unstructured filter is designed and simulated. The proposed compact metal-dielectric double-layered films contain two materials: a metallic layer covers on a nonmetallic layer. It is found that the transmission and absorption can be achieved simultaneously comparing to single metal layer structure. This indicates that the proposed compact metal-dielectric double-layered films show high good high transmittance and conductivity simultaneously. This strategy only needs to cover a thickness appropriate layer of a dielectric layer on the metal layer that the transmittance enhanced effect is achieved. Therefore, the proposed compact metal-dielectric double-layered films can be applied in many fields such as solar cells liquid crystal display light-emitting diodes and so on.

1 Structural design and optimization

1.1 Structural design and theoretical model

The proposed compact metal-dielectric double-layered films are shown in Fig.1(a). A silver layer covers on a glass substrate and a CaCO3 layer covers on the silver layer. Simulation is performed by the software Ansoft’s HFSS 12.0. The proposed compact metal-dielectric double-layered films structure is a continuous structure in the xoy plane as shown in Fig.1(a). A number of similar multilayer film structures have been reported.

The silver layer thickness is “h1.” The dielectric layer thickness is “h2,” and the glass substrate thickness is “h3.” In simulation, the lattice constant of the compact metal-dielectric double-layered films is “p.” Moreover, the thickness h1 is an adjustable structural parameter in simulation. Four ideal boundaries are applied in the unit cell of the proposed compact metal-dielectric double-layered films. These ideal boundaries ensure no electromagnetic wave energy between unit cells. In simulation, electromagnetic waves are incident perpendicularly to the surface of the structure. Specific structural parameters are given in Table 1. The silver layer structure is following the Drude model. The simulated transmission is achieved as:

\[T(\lambda) = 1 - R(\lambda) - A(\lambda) \]

Here, A(\lambda) is the simulated absorption rate while R(\lambda) is the simulated reflection rate. The single metal layer structure is also simulated as shown in Fig.1(b).

For the single metal layer structure, the maximum transmittance is achieved (20%) at 407 nm while the simulated absorption is reduced with wavelength as shown in Fig.1(c). Moreover, the simulated reflection is increased with wavelength and reached to 82% at 1 000 nm as shown in Fig.1(e). When a dielectric layer is covered above the metal layer, the optical property shows a dramatic change. For the proposed structure, the simulated transmission shows a peak (38%) at 502 nm as shown in Fig.1(d). At the same time, the simulated absorption shows a peak at the resonance wavelength 498 nm as shown in Fig.1(d).

2 Simulation results and discussion

2.1 Physical mechanism

Fig.1 (a) Three-dimensional image of the proposed compact metal-dielectric double-layered films. (b) Three-dimensional image of the single layered film. (c) Transmission absorption and reflection of the single silver layer film. (d) Transmission absorption and reflection of the proposed compact metal-dielectric double-layered films. The green part is the CaCO3 layer. The yellow part is the metal layer. The gray part is the glass substrate. (e) Three-dimensional image of the single layered film.
To understand the physics behind the transmission and absorption spectrum in Fig. 1 (c-d) \[\text{simulated electric field profile of the proposed structure across all layers is calculated}\] as shown in Fig. 2. For research convenience the electric field of the single metal layer structure is also calculated \[\text{as shown in Fig. 2 (a)} \]. It can be found that high value of electric field profile is achieved on the surface of the metal layer. In order to measure the electric field strength a test point is selected 2 nm below the surface of the metal layer \[\text{as shown in Fig. 2}\]. The single metal layer shows an obvious reflection on the metal layer surface at 508 nm which indicates a standing wave is achieved. However inside the metal layer the electric field intensity is drastically weakened which indicates that the transmission or absorption of the single metal layer is low as shown in Fig. 2 (a). For the proposed structure four calculating wavelengths are selected in simulation (465 nm, 508 nm, 560 nm and 800 nm) as shown in Fig. 2 (b-e). For the calculating wavelength at 465 nm a similar electric field distribution is found on the surface of the dielectric layer. However the electric field intensity at the testing point in Fig. 2 (b) is obviously higher than that in Fig. 2 (a). Moreover strong electric field distribution is found inside the dielectric and metal layers which implies that higher absorption and transmission are obtained in dielectric layer and metal layer respectively. Moreover the electric field distribution in the dielectric and metal layers is further enhanced at wavelength 508 nm in Fig. 2 (c) which results in the absorption and transmission peaks in Fig. 1 (d). However the electric field distribution in dielectric and metal layers is reduced at wavelength 560 nm and 800 nm in Fig. 2 (d-e) which leads to the absorption and transmission reduce in Fig. 1 (d). These results in Fig. 1 (c-d) and Fig. 2 (a-e) indicate that the proposed compact metal-dielectric double-layered films can achieve higher transmission than that of the single metal layer structure. In order to analyze the electric field intensity distribution characteristics of both structures the electric field resonance enhanced factor is adopting in this paper as following:

\[\sigma = \left| \frac{E_{fg}}{E_{bg}} \right| \]

In the equation (2) the calculated electric field \(|E| \) is tested in simulation at a fixed point which is 2 nanometers below the surface of the metal layer as shown in Fig. 2 (a-e). The electric field resonance enhanced factor spectrum is shown in Fig. 3. It is obviously that the proposed compact metal-dielectric double-layered films can achieve higher electric field distribution. The maximum electric field distribution intensity is 70 times of the single metal layer structure as shown in Fig. 3. At the same time a higher transmission is achieved as shown in Fig. 1. In order to further reveal the resonance properties of the compact metal-semiconductor double-layered films an S-parameter extraction method is used \[\text{as shown in Fig. 1} \].

| Table 1 Dimensional parameters of the proposed double-layer structure |
|---|---|---|---|
| Parameters | \(P \) | \(h_1 \) | \(h_2 \) | \(h_3 \) |
| Value (nm) | 100 | 8 | 34 | 40 |

The effective parameters extracted include effective permittivity \(\varepsilon_{eff} \) permeability \(\mu_{eff} \) refractive index \(n_{eff} \) and impedance \(z_{eff} \) as shown in Fig. 4. It is found that the real part of \(\varepsilon_{eff} \) is 1.12 \(\text{and the real part of } \mu_{eff} \text{ is 1.02} \). Therefore the effective impedance of \(z_{eff} \) the compact metal-semiconductor double-layered films is given as following:

\[z_{eff} = \sqrt{\mu_{eff}} \sqrt{\varepsilon_{eff}} \]

The real part of \(z_{eff} \) is 0.92 at the transmission peak wavelength 502 nm. This strong electromagnetic resonance behavior leads to a impedance matching phenomena between the compact metal-semiconductor double-layered films and the free space which results in the transmission enhancement. Moreover the imaginary part of \(z_{eff} \) is 0.03 at the reflection peak wavelength 498 nm which implies the reflection of the electromagnetic wave energy on the silver layer surface is reduced. At the same time the effective refractive index \(n_{eff} \) is given as following:

\[n_{eff} = \sqrt{\mu_{eff}} \sqrt{\varepsilon_{eff}} \]

The real part of \(n_{eff} \) is 1.65 and the imaginary part is +4.27 at the absorption peak wavelength 498 nm. The large imaginary part of \(n_{eff} \) indicates that the absorption

![Simulated electric field distributions at different resonance wavelength](image)

![The electric field resonance enhanced factor at different resonance wavelength](image)
2. Dielectric layer thickness optimization

The electromagnetic wave energy in the CaCO₃ layer is enhanced at the same time as shown in Fig. 2(b-c). These electromagnetic resonance behaviors result in an increase in transmission and absorption and a decrease in reflection. When electromagnetic waves are incident on the surface of the single silver layer structure, most of the energy is reflected (transmission and absorption are small). The electric field strength on the surface and inside of the silver layer is at a low level as shown in Fig. 2(a). When the electromagnetic waves are incident on the surface of the compact metal-semiconductor double-layered films, transmission and absorption are both enhanced (reflection is reduced) due to these strong resonance behaviors in Fig. 4. Therefore, the electric field strength on the surface and inside of the CaCO₃ layer and silver layer is increased as shown in Fig. 2(b-c). These results in Fig. 2 and Fig. 4 indicate that the electromagnetic properties of the entire multilayer film structure are greatly improved by covering a layer of CaCO₃ on a single silver layer.

![Image](https://example.com/image)

Fig. 4 The extracted effective parameters. (a) The effective permittivity \(\varepsilon_{\text{eff}} \). (b) The effective permeability \(\mu_{\text{eff}} \). (c) The effective impedance \(z_{\text{eff}} \). (d) The effective refractive index \(n_{\text{eff}} \).

2.2 Dielectric layer thickness optimization

To exploit the effect of the thickness \(h_1 \) on the transmission enhancement, a set of simulations is carried out while other structural parameters remain unchanged. Fig. 5 shows the transmission spectrum of the proposed compact metal-dielectric double-layered films with different thickness \(h_1 \). When \(h_1 \) is increased from 8 nm to 12 nm, the transmission peak is enhanced to 43% at 561 nm and the electric field resonance enhanced factor is 2.3. When \(h_1 = 20 \text{ nm} \), a maximum transmission 51% is achieved at 640 nm. However, when \(h_1 \) is larger than 20 nm, the transmission peak is reduced. The transmission peak shows a shift to longer resonant wavelength with \(h_1 \) increasing. For the single metal layer structure, the maximum transmission value is 20% at 407 nm. Resonant transmission enhancement is achieved when a dielectric layer with appropriating thickness is covered on the metal layer. These results indicate that the transmission enhancement can be manipulated by optimizing the dielectric thickness \(h_1 \). The transmittance enhancement factor is adopted to reveal the relationship between the dielectric layer thickness and the transmission enhancement as following:

\[
\delta = \frac{T_{\text{double}}}{T_{\text{single}}} \tag{5}
\]

Here, \(T_{\text{double}} \) is the transmission of the proposed structure and \(T_{\text{single}} \) is the transmission of the single metal layer structure. It can be found that the transmittance enhancement factor is increased with the dielectric layer thickness \(h_1 \) increasing as shown in Fig. 6. However, maximum values of transmittance enhancement factor are not exact consistent with transmission peaks. It is because that the transmission spectrum of the single layer structure shows a steep slope in 540 ~ 630 nm, which leads to the transmittance ratio increase.

![Image](https://example.com/image)

Fig. 5 Simulated transmission spectrum with different dielectric layer thickness

![Image](https://example.com/image)

Fig. 6 Transmission enhancement factor spectrum with different dielectric layer thickness

According to the equation (1), simulated transmission value is directly defined by the simulated absorption and reflection. In order to comprehensively study the optical properties of the proposed compact metal-dielectric double-layered films, simulated absorption and reflection are also calculated in simulation as shown in Figs 7 and 8. For a 8nm-thick dielectric layer coating on the metal layer, the simulated reflection is reduced obviously as
shown in Fig. 7. It is found that a simulated reflection valley near to 1% is achieved at 498 nm. When \(h_1 \) is increased from 8 nm to 20 nm, the reflection shows a slightly increased. The reflection valley is increased to 12% (thickness is 20 nm). When thickness \(h_1 > 20 \) nm, the reflection valley shows a slightly reduced. Moreover, the reflection valley shows a shifted to longer wavelength with \(h_1 \) increasing as shown in Fig. 7. At the same time, absorption peaks are obtained with different \(h_1 \) as shown in Fig. 8. The absorption peak shows an increase with \(h_1 \) increasing. The simulated reflection and absorption of the single structure is also provided in Fig. 7 and 8. For the single structure, the reflection shows an increase with wavelength and reaches 82% at 1000 nm. However, the simulated absorption is reduced with wavelength and reaches 7% at 1000 nm. In contrast to the presence or absence of a dielectric layer in Figs 7 and 8, it can be found that the simulated transmission is significantly enhanced after covering a dielectric layer on the metal layer. The simulated absorption is also enhanced.

2.3 Transmission enhancement with incident angle

Fig. 9 shows the transmission spectrum with different incident angle. The incident angle is increased from 0° to 45° in simulation. It can be found that the transmission peak shows a slight reduction when the incident angle is increased to 30°. When the incident angle is increased to 45°, the transmission peak is reduced to 32% only decreased by 6%. These results indicate that the proposed compact metal-dielectric double-layered films achieve stability of enhanced optical transmission to incident angle.

3 Conclusions

In this paper, we proposed a compact metal-dielectric double-layered film with a continuous dielectric film covering on a continuous metallic layer. It is found that the transmission can be enhanced obviously comparing the single metal layer structure. Moreover, the absorption is also enhanced while the reflection is reduced simultaneously. High stability of transmittance enhancement is shown when the incident angle reaches 45°. Since the proposed compact metal-dielectric double-layered film is non-hollowing structure, this structure can be large-scale and low cost manufactured in many potential fields.

References

