0.68 THz and 1.00 THz triplers based on
discrete Schottky diodes and quartz glass

JIANG Jun1,2, CHEN Peng1,2, HE Yue1,2, TIAN Yao-Ling1,2, HAO Hai-Long2,
CHENG Bin-Bin1,2, LIN Chang-Xing1,2*

(1. Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: This paper introduces two designs of balanced frequency triplers in 0.68 THz and 1.00 THz bands. The
proposed triplers are based on discrete antiparallel Schottky diodes and quartz glass instead of terahertz integrated
circuit. The merits of this work are attributed to the improvement of the diode model, the thinned quartz glass film
and the machining accuracy of the waveguide. The improved LEC diode model considers not only the current-voltage
(I/V) and capacitance-voltage (C/V) but also plasma resonance and skin effect. The quartz glass film is thinned to
15μm and can be used for up to 1.2 THz. The machining accuracy of the waveguide is (±3) μm for terahertz applications
with channel size 60 μm. The measurement shows a peak output power above 160 μW and 60 μW for the 0.68 THz and
1.00 THz triplers, respectively. Moreover, the efficiencies of the 0.68 THz and 1.00 THz triplers are around 1% and 0.6% correspondingly. The output frequency bandwidths are both more than 10%.

Key words: terahertz, balance tripler, Schottky diode, LEC model, antiparallel diodes, quartz glass

PACS: 07.57. Hm, 85.30. De, 85.30. Kk, 84.30. Vn, 42.70. Ce

Introduction

Terahertz spectrum has numerous applications in medicine identifications, astronomy, security, Earth’s
thermosphere, ionosphere measurement systems, and telecommunications[1-3]. The terahertz source is very
important for these applications[4-5]. Certain integrated sources are based on InP HEMT[6] and SiGe HBT[7].
Other solid-state devices including resonant tunneling diodes (RTDs)[8] and heterostructure barrier varactors

Received date: 2018-06-21, revised date: 2018-12-20

Foundation items: Supported by Microsystem and Terahertz Research Center, Institute of Electronic Engineering, China Academy of Engineering Physics (CA-EP-IEE), National Key Basic Research Program of China (973 Program) (2015CB755406), Defense Industrial Technology Development Program with (JCKY20162120045, JCKY20172120002)

Biography: JIANG Jun (1987-), male, Chongqing, China, Ph. D. Research area focus on terahertz and millimeterwave solid state circuit, include Schottky diode based mixer and frequency multiplier related technologies. E-mail: 001jiangjun@163.com

*Corresponding author: E-mail: linchangxing@mtu. ac.cn
(HBVs)\(^9\), for generating terahertz radiation have also been published. Compared with other high-frequency sources, Schottky diode based frequency multipliers maintain excellent signal quality, tunability, and stability simultaneously. Therefore, they are widely used as a local oscillator for ground-based radio astronomical receivers and vector network analyzer (VNA) frequency extenders\(^{10}\); their output power is less than 1 mW at around 1.00 THz band and the bandwidth is less 10\%\(^{11}\).

There are two ways to realize the Schottky diode-based circuits, THz-MICs, and THz-DCs (discrete circuits). THz-MIC is the main technical solution over 500 GHz, while the THz-discrete circuit is more popular below 300 GHz. THz-MICs ease chip assembly with an increase in cost, and the circuit based on discrete diodes, with design flexibility, is much cheaper. However, it demands good fault-tolerance circuit design and high assembly accuracy.

In this work, two frequency triplers are designed based on a discrete circuit, and the analysis on improved diode model, thinned quartz glass film, metal waveguide, and especially assembly process are demonstrated. It is proved that the discrete circuit and LEC model can be used up to 1.00 THz.

In this paper, several parts including modeling Schottky diodes, analysis of circuit theory, circuit’s topology design and simulation, measurement of the modules, and conclusions, are organized sequence.

1 Modeling Schottky diodes

Schottky diode model is very important for circuit design. There are mainly five kinds of models in the literature, including LEC model, drift-diffusion (DD) model, Hydro-energy transport (HD) model, Monte Carlo (MC) model and Quantum Kinetic model\(^12\).

The tripler uses one discrete Schottky diode chip, with two junctions in antiparallel. The main parameters of the diodes are extracted from the I-V and C-V curves. The model includes two parts; 3D model with coaxial probe shown in Fig. 1(a) and nonlinear LEC junction model shown in Fig. 1(b). Nonlinear LEC junction model includes Schottky diode junction, undepleted epi-layer, and GaAs N + substrate. The main parameters of the Schottky diode junction are presented in Table 1. The values of the parts include epi-layer, N + substrate, and Ohmic contact. They can be calculated from the material parameters and device size\(^13\).

Table 1 Two varistor diodes in anti-parallel configuration

<table>
<thead>
<tr>
<th>V(_{\text{f}})/V</th>
<th>I(_{\text{f}})/A</th>
<th>R(_{\text{f}})/Ω</th>
<th>n</th>
<th>C(_p)/F</th>
<th>C(_{\text{ep}})/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>9.11e-15</td>
<td>28</td>
<td>1.12</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The simulation model in the circuit comprises of two parts: nonlinear junction and 3D EM model. The 3D EM simulation software (like Ansys HFSS) exports the SNP file. The SNP file and nonlinear junctions in the HB simulation software (like ADS) make the final circuit model. Figures 2-3 show comparison of simulation and model results.

2 Analysis of circuit theory

2.1 Theory of the balanced tripler

Figure 4 shows the balanced tripler circuit based on
the anti-parallel diodes. The two diodes are placed between the input and output ports. In Fig. 4, $V_{in}, V_{out}, i_{in},$ and i_{out} represent the voltage and instantaneous current of the input and output signal respectively, where i is the instantaneous current flowing through the diodes.

\[i_1 = I_s \left(e^{i\alpha} - 1 \right) \]
\[i_2 = -I_s \left(e^{-i\alpha} - 1 \right) \]

where I_s is the reversed saturation current; $\alpha = q/\hbar kT$, and n is the ideality factor, a parameter that accounts the junction non-ideality. k is Boltzmann constant, T means the diode working temperature and q is an electrical charge. Then, the output current can be derived as Eq. 2.

\[i_{out} = i_1 + i_2 \]

According to the analysis in Ref. [17], the output current can be expressed as Eq. 3.

\[i_{out} = 4I_s \left[I_n \alpha V \cos(o_t + I_n \alpha V \cos 3o_t + \cdots) \right] \]

where o is the fundamental frequency and I_n means amplitude value of n-th harmonic signal. V is the value of input single. As Eq. 3 shows, the output currents contain only the odd harmonics, including fundamental.

2.2 Theoretical simulation of tripler

The efficiency of a Schottky varistor frequency tripler is determined by the diode non-linearity driven power, input power, diode biasing voltage, and the embedding impedances at the fundamental and harmonic frequencies. In the ideal resistive mode, the tripler efficiency remains below 6% ($\eta_{max} = n^{-2}$). In reality, the efficiency of the frequency multipliers declines rapidly with increasing output frequency and the multiplication factor. It is necessary to use harmonic tools to simulate the balanced tripler for an effective circuit structure. Figure 5 shows the theoretical simulation diagram, the BPFs (band pass filters) control the output harmonics frequency, and the terms control the impedance matching of corresponding harmonics. The simulation shows that there are no 2^m or 4^m harmonic frequencies. Theoretical efficiency component of the tripler is up to 2.5% in 0.68 THz bands, and 1.7% in 1.00 THz bands. The simulation results are show in Figs. 9 and 11.

3 Topology design and simulation

In 1990, Erickson established some successful architectures for both doublers and triplers, including the main topology of the balanced circuit and unbalanced circuit. Many works of literature have reported such architectures [15-16]. In this work, both the triplers employ the balanced architecture, using antiparallel Schottky diodes and quartz glass film. The design steps are diode modeling, theoretical simulation, separate simulation and global simulation in sequence. The parameters of diode models and impedances are optimized to achieve the design goal in an iterative procedure.

Three different tools are used for the design. In the beginning, physics-based models are constructed to calculate optimum diode properties based on the desired operating conditions (i.e., doping, epit-layer thickness, material). Then harmonic balance (HB) tools (such as Agilent ADS) calculate next embedding impedances. Finally, the complete the physical design is verified by a 3D EM simulation (such as Ansys HFSS).

Figure 6 shows the final physical design of the 0.68 THz and 1.00 THz triplers. The structures of the two triplers are almost similar, including input probe, input filter, diode placement, output probe, and match tuning network. Whether the two triplers are grounded is the main difference. If the 1.00 THz tripler is grounded, the ratio of length to width of will be too long. In fact, the ungrounded structure is acceptable and has little influence on the circuit.

4 Measurements

The measured results of the designed triplers are shown in this session.
4.1 The 0.68 THz tripler measurements

For the 0.68 THz tripler, the measurement platform is shown in Fig. 7. Here, our multiplier chain serves as the driver in 220 GHz. The output power of the 0.68 THz tripler is measured by VDI-Erickson PM4 through a WR1.5 to WR10 converter.

![Image 7](image7.png)

Fig. 7 0.68 THz tripler measurement platform

Figure 8 shows the details of quartz-glass circuit used in the 0.68 THz tripler module. The thickness of quartz-glass substrate is about ~15 μm. The circuit includes five parts: WR1.5 output probe, match-tuning network, hammerhead low pass filter, WR4.3 input probe, and GND. The size of the quartz substrate is 2.428 mm × 0.145 mm × 0.015 mm, and the precision of machining is about (±0.003) mm.

![Image 8](image8.png)

Fig. 8 Photograph of quartz circuit and entire modular of 0.68 THz tripler

Figure 9 shows the test results where the efficiency is 0.95% to 1.30%. The out power is between 100 μW and 160 μW when the driver power is varied from 10 to 12 mW in 220 GHz bands, and the simulation results matches the test results well.

![Image 9](image9.png)

Fig. 9 The results of the 0.68 THz tripler with 10 ~ 12 mW at 220 GHz, including simulation output power, measured output power and measured efficiency

4.2 The 1.00 THz tripler measurements

For the 1.00 THz tripler, the measurement platform is very similar to the one in Fig. 7. The 340 GHz multiplier chain serves as driver source. The output power is measured by VDI-Erickson PM4 through a WR1.0 to WR10 convertor. Fig. 10 shows the detail of quartz-glass circuit in the 1.00 THz tripler module. The thickness of quartz-glass substrate is about 15 μm, including four parts: WR1.0 output probe, match-tuning network, Hi-Lo low pass filter, and WR2.8 input probe. The size of quartz substrate is 1.091 mm × 0.075 mm × 0.015 mm. And the precision of machining is about (± 0.003) mm.

![Image 10](image10.png)

Fig. 10 Photograph of quartz circuit and entire modular of 1.00 THz tripler

Figure 11 shows the test and simulation results. The test output power is between 10 μW and 60 μW when the driver power is varied from 5 mW to 12 mW around 340 GHz band. There are two kinds of 1.00 THz tripler circuits, which are named tripler-match1 and tripler-match2. They are very similar to each other. The length of match tuning in the tripler-match1 is longer than tripler-match2. The structure of the match tuning is shown in Fig. 6(b) with the same microstrip line width in matching. The tripler-match1 means the length of input and output match line is 60 μm and 10 μm respectively. The tripler-match2 means the length of input and output match line is 30 μm and 12 μm respectively.

The differences between the simulation and measurement are mainly due to the deviation of machining, quartz substrate, diode high frequency model, and the
assembling mismatches. On the other hand, the transmission loss model of the aluminum metal cavity and the suspended microstrip line at high frequency is inaccurate and difficult to be measured. In general, the reasonable gap between simulation and measurement is within 6dB when the frequency is up to 1.00 THz. As long as the above deviation is improved, it is possible that the measurement will be closer to the simulation.

![Graph showing output power vs. frequency](image)

Fig. 11 The results of 1.00 THz tripler with 10 ~ 12 mW at the 340 GHz band, including one kind of circuit’s simulation output power, two kinds of measured output power

图11 1.00 THz 三倍频器在340 GHz 频段内10 ~ 12 mW 驱动条件下测试得到的输出功率

5 Conclusions

This paper proposes the design and fabrication of two frequency triplers at 0.68 THz and 1.00 THz bands basing on discrete Schottky diodes and quartz glass. Triplers around 0.68 THz and 1.00 THz bands have been investigated and the state of the arts in table 2. There is few papers or products in these bands and not too many research institutes around the world have studied in the relevant frequency bands, such as JPL and VDI. The measured results prove that the 0.68 THz frequency tripler can work at 0.65 ~ 0.69 THz and achieve a maximal output power of 160 µW. The maximal efficiency is up to 1.3%. The 1.00 THz frequency tripler can work at 0.99 ~ 1.07 THz, and achieve a maximal output power of ~ 60 µW. The efficiency is up to 0.6%. The 1.00 THz tripler is able to deliver higher output power and wider bandwidth if the driving source provides higher power and wider bandwidth. Discrete circuit technology and TMCs can both be used in the frequency multiplier source up to 1.1 THz. Furthermore, discrete circuit technology is much more flexible and cheaper.

References

