Fundamental W-band InP DHBT-based voltage-controlled oscillator with wide tuning range and high output power

WANG Xi\(^1\), YAO Hong-Fei\(^1\), SU Yong-Bo\(^1\), DING Wu-Chang\(^1\), MUHAMMAD Asif\(^1\), DING Peng\(^1\), TONG Zhi-Hang\(^1\), JIN Zhi\(^1\),*

\(^{1}\)High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;

\(^{2}\)School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

Abstract: A fundamental W-band voltage-controlled oscillator (VCO) featuring high output power and wide tuning range has been successfully designed. The VCO was fabricated utilizing 0.8 μm InP DHBT technology. The DHBT exhibits peak \(f_T\) of 170 GHz and \(f_{\text{max}}\) of 250 GHz. The VCO core implemented a balanced Colpitts-type topology modified for high-frequency application. An additional buffer amplifier stage was connected with the core to further boost output power as well as eliminate the load pulling effect. The DHBT base-collector P-N junction at reverse bias was chosen as a varactor diode to realize a wide frequency tuning. The measured results demonstrate that the oscillation frequency of the proposed VCO can be tuned between 81 ~ 97.3 GHz, which is a relative tuning bandwidth of 18.3%. Over this frequency range the oscillator has a maximum output power of 10.2 dBm and the power variation is less than 3.5 dB. A phase noise of –88 dBc/Hz@1MHz is obtained at the highest tuning frequency.

Key words: voltage-controlled oscillator, InP DHBT, wide tuning range, high output power

PACS: 84.40.Dc, 71.55.Eq, 78.55.Cr

Introduction

Millimeter-wave and sub-millimeter frequency sources are the essential part for both military and commercial applications such as communication, radar, and medical imaging systems. Monolithic microwave integrated circuit (MMIC) is a good choice for these systems. ...
to achieve a frequency source with good performance and small size. Traditionally FETs are able to deliver more power and higher frequencies of oscillations. However, heterojunction bipolar transistors (HBTs) exhibit an inherently lower device flicker noise compared with high electron mobility transistors (HEMTs) and are quite popular in low phase noise VCO fabrication. InP double-HBT (DHBT) technology offers high breakdown voltage and power capabilities as well as outstanding high-frequency properties. This has been demonstrated by the reported W-band oscillators using InP HBTs and SiGe HBTs. Meanwhile, the use of CMOS and GaN pHEMTs are also reported in W-band VCOs. However, HBTs are better candidates for satisfying the overall requirements in frequency sources, especially in high-frequency range.

Sufficient output power is the primary requirement of high-frequency signal sources and is highly desired in some applications such as automotive radar transmitters. If output power of the VCO is too low to drive next stage, the connected amplifier needs a higher gain to boost the carrier in the system. However, most of the reported VCOs have relatively low output power and narrow tuning range in W-band. The main attention here is to achieve high oscillation frequency and output power without neglecting tuning range and phase noise. In this paper, a 81~97.3 GHz (18.3% tuning range) fundamentally monolithically integrated VCO is presented. Signal swing at the collector is larger; therefore, the output node is selected at the HBT collector to obtain a higher output power. Since the used InP DHBTs display a breakdown voltage BV_{ce} greater than 6 V, a good power handling capability and signal swing could be achieved. An additional buffer amplifier stage is incorporated to further improve the power performance as well as eliminate the load pulling effect. It delivers a maximum differential output power of 10.2 dBm. The proposed MMIC VCO combines a relatively large tuning bandwidth with high output power, thus making it an appropriate frequency source in some high-frequency systems such as 94 GHz radar systems.

1 InP DHBT technology

The InP DHBT technology with emitter width of 0.8 μm was used in the fabrication of the VCO. The transistor is grown on 3-inch Fe doped InP wafer with an epitaxial profile designed for high-frequency power application. The InP substrate is semi-insulating and is thinned down to 150 μm. The epitaxial layers consist of a 40 nm carbon-doped base layer and a composite collector. The 0.8\times15 μm2 DHBT demonstrates RF figures-of-merit (f_c and f_{max}) of 170/250 GHz when biased at $I_C = 15$ mA and $V_{CE} = 1.7$ V. The device breakdown voltage BV_{ce} could be greater than 6 V.

The InP DHBT MMIC process includes MIM capacitors, thin-film resistors (50 Ω/sq) and 3-levels of metal layers (M1/M2/M3). The MIM capacitor is formed with 200 nm SiN dielectric between the capacitor metal layer and M2. Two additional interconnect layers are added with 2 μm interlayers benzocyclobutene (BCB) dielectric separating the three metal layers. Coplanar waveguide (CPW) configuration instead of microstrip is employed to achieve lower loss and eliminate the need of backside metallization and via-hole processing.

The chip photograph is shown in Fig. 1. The total chip size is only 750 μm \times 650 μm including DC and RF probe pads.

2 Circuit design

The W-band differential VCO is implemented according to the schematic shown in Fig. 2. It consists of a VCO core based on a balanced Colpitts-type topology extended by an output buffer amplifier.

The VCO core consists of two identical Colpitts-configured oscillator sub-circuits in which short coplanar transmission lines below a quarter wavelength are used as the inductively acting elements. Such a circuit configuration is selected because of its inherent negative resistance characteristic. The HBT base-collector P-N junction is used as the varactor diode C_{var} which serves as a destabilizing element and the frequency tuning component. For the traditional VCO operating in lower frequency the VCO resonator is formed by the capacitance C_{res} and the inductive transmission line L_0. For the W-band VCO pro-
posed in this paper an additional short transmission line L_e is introduced to improve the performance.

Fig. 3 (a) shows the simplified diagram of Colpitts oscillator and Fig. 3(b) shows the modified version for high-frequency oscillator with an additional inductor L_e. In our design the capacitor C_s is omitted and the internal base-emitter capacitance C_{be} in the transistor takes over the role of C_s. In order to explain the effect of the added inductor L_e, we will analyze the circuits under small-signal condition. The simplest transistor model— an ideal transconductance model is used here. The small signal models for the circuits in Fig. 3 are shown in Fig. 4. Analyzing Fig. 4(a) for the input impedance yields

$$Z_{in} = - \frac{g_m}{4 \pi^2 f^2 C_s C_{var}} - j \frac{1}{2 \pi f (\frac{1}{C_s} + \frac{1}{C_{var}})} \tag{1}$$

where the negative real part of Z_{in} corresponds to the negative resistance. It is obvious that the value of negative resistance is small in high-frequency. Analyzing Fig. 4(b) yields

$$Z_{in} = - \frac{g_m}{4 \pi^2 f^2 C_s C_{var}} - \frac{1}{2 \pi^2 f C_s} \left(\frac{1}{2 \pi f C_s} + \frac{1}{2 \pi f C_{var}} - \frac{1}{2 \pi f L_e} \right) \tag{2}$$

In W-band $4 \pi^2 f^2 C_s C_{var} > 4 \pi^2 f^2 C_s C_{var} - \frac{C_{be}}{L_e} > 0$. This means that by putting an additional L_e the negative resistance is boosted in higher frequency. Fig. 5 shows the simulated real part of the impedance looking into the base. As can be seen from Fig. 5 L_e help enhance negative resistance in higher frequency making it more suitable for W-band application.

From the simulation in Fig. 5 large negative resistance is achieved in quite a broad band indicating that there is plenty of negative resistance margin for wideband tuning. The oscillation frequency for a Colpitts oscillator can be defined as:

$$f_{osc} = \frac{1}{2 \pi f} \sqrt{ \frac{C_s C_{var}}{L_e + C_{var}} } \tag{3}$$

Large sizes for HBTs in VCO core are selected for two reasons:

- (1) Transistors with large sizes allow a larger current which enables higher output power;
- (2) Transistors with large sizes have larger base-emitter capacitance (C_{be}) values. According to equation (3) a larger C_{be} leads to a wider tuning range.

The frequency tuning is obtained by changing the bias voltage of HBT base-collector P-N junction C_{var}. An excellent varactor should have larger capacitance tuning ratio and Q-factor. The lower Q-factor not only degrades phase noise performance but also prevents oscillation at some of the tuning points again limiting the tuning range. The selected base-collector varactor can achieve about a 2.5:1 capacitance tuning ratio when the voltage is tuned from 0 to 2 V while the capacitance value varies from 24 to 67 fF. The average value of simulated capacitance Q-factor is about 5 at the desired frequency. The capacitance tuning ratio and Q-factor prove that the base-collector diode is suitable to be used as a varactor.

In order to get a high output power the collector of transistor T0 is used as the output as the signal swing at the collector is larger. The fabricated InP DHBT has a breakdown voltage $BV_{col} > 6$ V making it suitable for high power application. For an oscillator a buffer stage is always needed to eliminate load pulling effect. The single stage common-emitter amplifier is adopted as a buffer to...
maximize output power. Since the buffer amplifier could provide isolation between the load and the VCO core[9] it also does great help to mitigate load pulling effect[10]. The T-shaped network \(L_{c1} - L_{c3} \) serves as the inter-stage matching between the VCO core and the buffer amplifier. According to the simulation[9] by optimizing this inter-stage matching inductively the output power could be improved significantly. An additional T-shaped impedance network is applied between the buffer stage and 50 Ohm load to further boost output power at the frequency range of interest.

By using a balanced topology[11] virtual grounds are created for the fundamental signal at the symmetry plane such as at the points of \(a, b \) and \(c \). In this way the capacitance to ground can be eliminated[12] as ac ground can be provided at the virtual ground node. Therefore[11] the chip size is quite small. Mirror current sources are used to provide stable DC current to the VCO.

The circuit is simulated using the Keysight Advanced Design System (ADS). First[11] the small signal S-parameter analysis is used to find the oscillation frequency. Then transient analysis and harmonic balance simulation are used to ensure the oscillator performance. Finally[11] the EM simulation for the layout is done by the Keysight EM-simulator Momentum.

3 Measured results and discussion

The measurements of the designed W-band VCO are performed on-wafer at room temperature. The on-wafer test setup is shown in Fig. 6. An Agilent N9030A PNA signal analyzer is used for spectral measurements. The Farrantech WHMB-10-0002 75-110 GHz harmonic mixer is used to extend the frequency to W-band. The mixer has a maximum RF input power of 3 dBm and the conversion loss is 35 ~ 38 dB in this frequency range. Since the output power of the proposed VCO is greater than 3 dBm[12] a -10 dB attenuator is placed between the VCO and the mixer to protect the mixer from being damaged. In addition[12] the waveguide and the probe have about 3 dB loss in the 90 GHz band. Accordingly[12] the measured output power needs to be calibrated by +48 ~ 51 dB to account for the losses of probe[13] waveguide[14] attenuator and the mixer.

The VCO used a balanced topology[11] as this kind of topology could have two complementary outputs. When two outputs are connected with a balun which provides 180° phase shift[15] the fundamental frequency output power can be doubled. For measurement simplicity[16] we have only single-ended output in this layout design while leaving the complementary output directly connected with a 50 Ohm resistance. Theoretically[16] the total differential output power is 3 dB higher than the single-ended output power.

![Diagram of VCO test setup](image)

The supply voltage \(V_{\text{out}} \) of the VCO is \(-4 \) V with a total DC current of about 90 mA. However[12] the bias current mirrors consume about half of this DC power. Fig. 7 shows the measured spectrum for single-ended output at the maximum tuning frequency of 97.3 GHz. We arrive at a calibrated single-ended output power of 5.2 dBm at 97.3 GHz[17] corresponding to a total signal power of 8.2 dBm.

![Measured output spectrum of the VCO](image)

Table 1 Comparison of some reported VCOs

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Process</th>
<th>Freq. /GHz</th>
<th>Tuning Range/%</th>
<th>(P_{\text{out}})/dBm</th>
<th>Efficiency/%</th>
<th>Phase Noise (dBc/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4]</td>
<td>0.25 μm InP DHBT</td>
<td>113 ~ 118</td>
<td>4.3</td>
<td>-0.5</td>
<td>-</td>
<td>~890 at 1 MHz</td>
</tr>
<tr>
<td>[14]</td>
<td>1.0 μm InP DHBT</td>
<td>85 ~ 100</td>
<td>12.8</td>
<td>7</td>
<td>1.4</td>
<td>~908 at 1 MHz</td>
</tr>
<tr>
<td>[12]</td>
<td>0.5 μm InP DHBT</td>
<td>52.15 ~ 54.75</td>
<td>4.5</td>
<td>2.5</td>
<td>2.0</td>
<td>~890 at 1 MHz</td>
</tr>
<tr>
<td>[11]</td>
<td>InP on InGaAs MOS</td>
<td>81.8 ~ 82.4</td>
<td>0.7</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>[13]</td>
<td>100 nm GaN HEMT</td>
<td>85.6 ~ 92.7</td>
<td>7.2</td>
<td>10.6</td>
<td>1.8</td>
<td>~87.4 at 1 MHz</td>
</tr>
<tr>
<td>[7]</td>
<td>90 nm CMOS</td>
<td>112 ~ 117</td>
<td>4.4</td>
<td>-12</td>
<td>-</td>
<td>~936 at 1 MHz</td>
</tr>
<tr>
<td>[11]</td>
<td>65 nm CMOS</td>
<td>96.8 ~ 108.5</td>
<td>11.5</td>
<td>-</td>
<td>-</td>
<td>~880 at 1 MHz</td>
</tr>
<tr>
<td>This work</td>
<td>0.8 μm InP DHBT</td>
<td>81 ~ 97.3</td>
<td>18.3</td>
<td>10.2</td>
<td>2.9 (5.8*)</td>
<td>~880 at 1 MHz</td>
</tr>
</tbody>
</table>

\(P_{\text{out}} \) here is maximum output power.

* DC-RF efficiency after subtracting DC power consumption of mirror current source.
ly. According to Fig. 8 by varying V_{tune} the VCO can be continuously tuned from 81 GHz to 97.3 GHz. The relative tuning bandwidth is 18.3% which is quite a wide tuning band for a W-band VCO. The maximum output power of 10.2 dBm is achieved while the output power variation was less than 3.5 dB over this frequency range. This is a rather wide tuning frequency range as well as high output power. The high output power makes the maximum DC-RF efficiency 2.9% and it can be 5.8% after subtracting the DC power consumption of the bias mirror current source. Compared with the measured and simulated results both the simulated frequency and the output power are a bit larger than the measured results. This is due to the fact that the device large-signal model is not accurate enough since the model is based on 0 ~ 40 GHz measured data.

![Diagram](image)

Fig. 8 (a) Measured and simulated results of the oscillation frequency as a function of the tuning voltage. (b) Measured and simulated results of the output power as a function of the tuning voltage.

An accurate determination of phase noise is difficult in high-frequency and the noise introduced by the bias supplies complicates the measurement. Usually a stabilization technique such as a phase locked loop will be used to minimize the phase noise of the VCO. In this case the VCO is designed as a free running oscillator. The measurement of phase noise could be estimated from the measured spectrum using the signal analyzer. A phase noise of about -88 dBC/Hz@1 MHz offset was measured at the highest operation frequency of 97.3 GHz.

Among the listed results our VCO demonstrates high output power wide tuning bandwidth and high efficiency while the phase noise is also not bad. To the authors' knowledge among the reported W-band InP HBT based VCOs with such a wide tuning range this one behaves the best output power performance.

4 Conclusion

A fundamental monolithically integrated balanced VCO has been successfully designed using InP DHBT technology. By using the base-collector junction of the DHBTs as the varactor a tuning range of 18.3% is achieved covering the frequency range in 81 ~ 97.3 GHz. The maximum single-ended output power is 7.2 dBm resulting in a total value of 10.2 dBm. The DC power consumption is only 360 mW among which the bias current mirrors consume about half of the DC power. The performance of this VCO in terms of frequency tuning range and output power is excellent among the published VCOs at the considered operation frequencies and the phase noise is also good. The maximum DC-RF efficiency is 2.9% and it could be as high as 5.8% after subtracting the DC power consumption of bias current mirrors. The total chip size is only 750 μm x 650 μm.

This work demonstrates that InP DHBT has great suitability for high performance frequency source in millimeter-wave applications.

Acknowledgments

The authors would like to thank Li Yankui for the measurement.

References

HDE and the optimization method is investigated. Then an infrared telescope with a double-layer HDE is designed. Its diffraction efficiency is larger than 99% at each wavelength in the mid and far-infrared wavebands, which improves the image contrast and the image performance significantly. MTF is above 0.5 at 17 lp/mm and image performance is near-diffraction. And it is applicable to the uncooled infrared dual waveband CCD detector that has a format of 640 × 512 which’s pixel pitch is 30 μm. By introducing double-layer HDE in optical design, chromatic aberration is well corrected.

References

[1] Hinrichs M. Dual band (MWIR/LWIR) hyperspectral imager in:

