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Abstract: Near-infrared image sensors are widely used in fields such as material identification, machine vision,
and autonomous driving. Lead sulfide colloidal quantum dot-based infrared photodiodes can be integrated with sil-
icon-based readout circuits in a single step. Based on this, we propose a photodiode based on an n-i-p structure,
which removes the buffer layer and further simplifies the manufacturing process of quantum dot image sensors,
thus reducing manufacturing costs. Additionally, for the noise complexity in quantum dot image sensors when
capturing images, traditional denoising and non-uniformity methods often do not achieve optimal denoising re-
sults. For the noise and stripe-type non-uniformity commonly encountered in infrared quantum dot detector imag-
es, a network architecture has been developed that incorporates multiple key modules. This network combines
channel attention and spatial attention mechanisms, dynamically adjusting the importance of feature maps to en-
hance the ability to distinguish between noise and details. Meanwhile, the residual dense feature fusion module
further improves the network’s ability to process complex image structures through hierarchical feature extraction
and fusion. Furthermore, the pyramid pooling module effectively captures information at different scales, improv-
ing the network’s multi-scale feature representation ability. Through the collaborative effect of these modules, the
network can better handle various mixed noise and image non-uniformity issues. Experimental results show that it
outperforms the traditional U-Net network in denoising and image correction tasks.

Key words: PbS Quantum dot focal plane detector, convolutional neural networks, image denoising, UNet
PACS:

FT PbS £EF R & FEHRNZF B G R IERZIEE NLH U-Net 122 M 45

THRE'Y, KzAY, FEFY, DEE, TLEY chailt, BERt, BB
FRE?, ERAY, BER, W ET, I
(1. rpEPBlERE EHEEARY BTS20 /M P E 5 5 5086 %, _FVF 200083 ;
2. W ERRERE R B = SRS Be 3 SO0 R TR 2= B U 310024
3. T ERREBE KA, AT 1000495
4. EARE B 5 REEKESLRE B 5 RGBS, L 2000435
5. B REERE 2400, [T 200444)

WE S ERERE ZRATARRA ABENE A B3 STk, ETRAEREET AW

Foundation items: Supported by Natural Science Foundation of China (Grant Nos. 62105100).
Biography: Wang Hanting (1999-), master degree candidate. Research area involves analog CMOS readout circuits and image denoising. E-mail: wang-
hanting22@mails. ucas. ac. cn.

" Corresponding author : E-mail : jianluwang@fudan. edu. cn , hongshen@mail. sitp. ac. cn.



2 AN/ RS9 S g o

XX &

AR —BETU AL S REETEHEAEHER SRR, BT, RORET —MHET o-ipity e =
BE,FRT &R #—FHACTETAERERBNHETZ, AWM T HEmA, W FTEFR
HGEEREEFRREGINGREZRE ERMEXRMENTURE T EFEERELE RELEREK, #
MU ETRRMBEEAREE N EFREARBERGE, FRT —Ha@E LA RBEREFERN, %
MegdaeTREAERI RO ERANA S AEFMEENEES, UBBEX 2R FMETHES, F
HOAZEERERGERAL P EHERBREREG SR T HELERELEGEMWE S, Mt
SFEMMEEERMBERIEARENEL , RET HEN S REHMER TR, B 5 oy b R/ 1F
B RGEFHNELENBeRFMEAGESTERNR, ZRERLW, CAEXEFMEAGRESES TR

FH %t U-Net W -

X @ R:.PSETEETEWEME; ERMZRKL,; HHE E%; UNet

Introduction

With the increasing applications in industrial in-
spection[l] , material sorting[ﬂ , and autonomous driv-
ing[?) , 4], the field of infrared sensing and imaging has
attracted widespread attention from researchers. Tradi-
tional InGaAs and HgCdTe photodetectors require high-
quality single-crystal substrates for fabrication and rely
on indium bump flip-chip bonding to integrate with com-
plementary metal — oxide — semiconductor (CMOS) read-
out integrated circuits (ROIC). This not only increases
the manufacturing cost and reduces the throughput but al-
so significantly affects the resolution of focal plane photo-
detector arrays, thereby limiting their application scenar-
ios[5]. Lead sulfide (PbS) colloidal quantum dot image
sensors can be fabricated by directly spin-coating quan-
tum dot materials onto the surface of the ROIC, eliminat-
ing the need for flip-chipbonding. Moreover, they can
operate at room temperature, offering advantages in
terms of manufacturing cost and array size scalability.

PbS quantum dot infrared image sensors have
emerged as a key research focus. Liu et al[6]. reported
a near-infrared image sensor based on PbS quantum dots
with an array size of 640%x512[6]. SWIR Vision Systems
has developed multiple large-array PbS quantum dot cam-
eras with resolutions of 1920x1080[ 7], covering several
spectral bands from near-infrared to shortwave infrared,
with a maximum detection range of up to 2100 nm. How-
ever, these PbS quantum dot image sensors are typically
based on p-i-n photodiodes [6, 8-10]. The implementa-
tion of the p-i-n structure generally requires the use of
fullerene (C,,) as a buffer layer. While C,, materials ex-
hibit excellent electron transport properties, they are ex-
pensive and involve complex fabrication processes[11],
significantly increasing the overall structural complexity
and manufacturing costs.

In addition, image processing methods for photode-
tectors have become a current research hotspot [ 12-15].
On one hand, the shot noise, 1/f noise, and other noises
from the front-end photodetector will couple with the
noise of the back-end readout circuit as well as the noise
introduced during signal transmission. On the other
hand, in different application scenarios, variations in
temperature, light intensity, and signal transmission pro-
cesses often result in the final captured images contain-
ing various forms and intensities of noise. Additionally,
process deviations in CMOS readout circuits can lead to
significant non-uniformity in the captured images, which

is one of the main factors affecting the imaging quality of
image sensors[ 16 ]. Currently, methods for direct image
processing in both the spatial domain and the frequency
domain have been widely studied. Traditional non-unifor-
mity correction methods include calibration-based correc-
tion methods [ 17, 18] . Scene-based correction methods
[19, 20] and filter-based correction methods [21, 227,
etc. These methods can indeed achieve good results in
image non-uniformity correction, but they also face some
issues. Calibration-based methods assume system stabili-
ty, but factors like temperature drift, vibrations, and
changes in light or detector performance can cause sensor
response drift, leading to calibration failures. These
methods also require extensive data collection, which is
time-consuming. Scene-based correction methods de-
pend on the scene and may introduce errors with dynamic
changes. Separating non-uniformity from scene informa-
tion is challenging, especially in textured or high-fre-
quency scenes, potentially distorting details. Filter-
based methods smooth non-uniformity, but also blur im-
age details, especially at edges, and assume uniform
non-uniformity, which isn’t always the case in real-world
scenarios. After performing non-uniformity correction on
an image, denoising is also a key step in improving the
overall image quality. Traditional image denoising meth-
ods can generally be classified into spatial domain meth-
ods [23], frequency domain methods [24] , and trans-
form domain methods [25]. However, these methods
may not be sufficient to capture all noise components
when dealing with certain noise patterns. Additionally,
the parameter selection for frequency domain filtering
can be challenging, and these methods are highly sensi-
tive to spectral characteristics. These factors, to varying
degrees, limit the efficiency and application scenarios of
photodetectors.

This paper proposes and develops a photodiode
based on a normal-incidence n-i-p structure. Compared
to the p-i-n structure, the n-i-p structure simplifies the
manufacturing process and eliminates the need for the ex-
pensive Cg, buffer layer. This not only reduces the overall
manufacturing cost of the device but also simplifies the
fabrication workflow, making it more suitable for large-
scale production and commercialization. We applied the
detector to an array with a scale of 128X128, a pixel size
of 15um, and a readout circuit chip fabricated using a
180nm process, successfully fabricating a PbS quantum
dot focal plane photodetector. Subsequently, we simulat-
ed potential noise scenarios that the quantum dot focal
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plane detector might encounter during actual use. Noise
was artificially added to a public dataset, and based on
UNet, we further designed an image processing algorithm
that combines non-uniformity correction and image de-
noising for the quantum dot focal plane detector. This
network model is a variant of UNet that incorporates vari-
ous attention mechanisms and a residual dense feature fu-
sion module, specifically designed for image denoising
tasks in complex noisy environments. The goal is to im-
prove the reconstruction quality and detail restoration ca-
pability of images under noise interference. Experiments
demonstrate that this model achieves better denoising re-
sults in images with a mix of non-uniformity, image sen-
sor noise, and quantum dot image sensor ring noise, sig-
nificantly outperforming traditional UNet-based denois-
ing methods.

1 Design and methods

To integrate with the readout circuit, quantum dot
photodiodes require a normal-incidence structure. We
designed an n-i-p normal-incidence structure, as shown
in Figure 1(a), consisting of a multilayer configuration
of Au/ZnO/PbS/PbS-EDT/ITO. In this structure, ZnO
acts as the electron transport layer, PbS CQDs as the
light-absorbing layer, PbS-EDT (The PbS CQD thin
film, modified by 1, 2-ethanedithiol solid-phase ligand
exchange, ) as the hole transport layer, and Indium Tin
oxide as the transparent conductive electrode. Compared
to the p-i-n structure, the n-i-p structure simplifies the
fabrication process and eliminates the need for the expen-
sive Cg, buffer layer. The transmission electron microsco-
py (TEM) image (Figure 1(b)) shows a cross-sectional
view of our PbS photodiode. The thickness of each layer
in the device is uniform and dense, with clear interfaces.
The response wavelength range of this photodetector is
400-1100 nm. To evaluate the photodiode’s response to
near-infrared light, we conducted current density - volt-
age (J-V) measurements under 940 nm laser illumina-
tion at different light intensities, as shown in Figure 1
(c). Initially, under dark conditions without illumina-
tion, the photodiode’s J-V curve exhibited clear diode
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rectification behavior. The rectification ratio was approxi-
mately five orders of magnitude, indicating excellent rec-
tification performance. Furthermore, the device demon-
strated a low dark current density, approximately 0. 13
LA-em ™2 at a reverse bias of -0. 1 V, which reflects a
low leakage current and ensures a high signal-to-noise ra-
tio. Under illumination, the device’s photoresponse was
tested across a range of 940 nm laser intensities, from 10
pWeem™2 to 11 We-em ™2 The results demonstrate that
the photodiode maintained a nearly constant response
rate of approximately 0. 3 A/W throughout the entire mea-
surement range. Furthermore, under reverse bias, the
photocurrent remained almost constant, indicating that
the device maintains efficient photoelectric conversion
even at low reverse voltages. This characteristic provides
a strong foundation for the development of low-power,
high-sensitivity PbS quantum dot image sensors.

The readout circuit chip structure, shown in Figure
2, includes a 128x128 pixel array, column-level amplifi-
ers, output buffers, and row-column selection circuits.
Each pixel measures 15 pm, with a full-well capacity of
6.366 Me™.

Neural networks, through extensive training, learn
noise distributions and image characteristics, enabling
them to adapt to complex noise patterns and diverse
scene properties without relying on fixed assumptions.
This allows them to handle various types of noise and im-
age non-uniformity, including mixed and time-dependent
noise. Convolutional Neural Networks (CNNs) extract
multi-level features, effectively capturing both local and
global details, and preserving edges and textures better
than traditional methods. By optimizing the input-output
mapping through loss functions (such as MSSIM, MSE,
I.1), neural networks eliminate the need for intermediate
processes to separate noise from signal, enabling global
optimization. They can also update correction parameters
in real-time in dynamic scenes, unaffected by time-de-
pendent drift or background changes, while leveraging
GPU acceleration to enhance efficiency compared to tra-
ditional methods.

U-Net was first proposed in 2015 [26]. Currently,
U-Net is widely used in various computer vision tasks
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(a) Schematic diagram of the PbS CQDs photodiode. (b) Cross-section TEM image of the PbS CQDs photodiode with a

scale bar of 100 nm. (¢) Semilog J-V curves of the device in the dark and under NIR (940nm) illumination at intensities from 10 uW -

cm”to 1IW-cm™.
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Figure 2 (a) The overall structure diagram of ROIC chip, including the pixel circuit, row selection circuit, column selection circuit,
column buffer, and output buffer. (b) Pixel circuit structure schematic, including CTIA, CDS, and SF sections, with two output sig-
nals, Vout, and Vout,. (c) Digital signal timing: The rising edge of SH1 coincides with the falling edge of RESET, while the falling
edge of SH2 should occur before the rising edge of the RESET signal. (d) Physical image of the chip: This chip is based on the 180nm
process with an array size of 128x128. There are 20 pads each on the top and bottom of the chip.
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[3], especially for problems that require pixel-level pre-
dictions, due to its efficient and accurate segmentation
capabilities. U-Net adopts an Encoder-Decoder architec-
ture, where the encoding process extracts features and
downsamples the image through a series of convolutional
layers and max-pooling layers, gradually capturing high-
level semantic features of the input image. In the decod-
ing process, upsampling and convolution layers are used
to restore the feature maps and gradually recover the im-
age's spatial resolution, achieving fine segmentation.
Some research has demonstrated that U-Net can also
achieve good results in image denoising tasks [27, 28].
Javier et al. proposed RDUNet, a neural network that
combines Residual Networks, Dense Networks, and the
U-Net structure, designed for image denoising and other
low-level computer vision tasks. Based on U-Net, we re-
tained certain aspects of RDUNet's residual dense fea-
ture fusion module and added the Pyramid Pooling mod-
ule and Dual Attention module. The main network struc-

ture is shown in Figure 3.

We first introduced the Residual Dense Fusion
Block, whose structure is shown in Figure 4 (a). This is
a network module that performs feature fusion using
dense connections and residual mechanisms. The mod-
ule enhances information flow by progressively extracting
and merging features, while the residual connections pre-
serve the original input features. The core of the module
is a network made up of multiple Dense Connections.
The input to each layer is the output of all previous layers
(including the original input x). The input feature map
at the i-th layer is a concatenation of the outputs of all
previous 1 layers, followed by ReLU activation, which
further enhances the information flow, allowing each lay-
er to make full use of features from previous layers. The
outputs from all layers are then concatenated into a larger
feature map, further enhancing the model’s expressive
power, allowing each layer to learn diverse information
from different levels. The fused feature map is then pro-
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Figure 3  The overall structure diagram of the DRPUNet network. This network builds upon the traditional UNet architecture by adding
a Pyramid Pooling module and incorporates a Dual Attention mechanism and a Residual Dense Fusion Block during the sampling pro-
cess.
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cessed by a 1X1 convolutional layer to produce the con-
volved output x4 ma- Finally, a residual connection
adds the input x and x,, ;. together to obtain the final
output x". This process ensures that the original input x
information is not lost in the network , helping to alleviate
the vanishing gradient problem and making it easier for
the network to learn effective features.

We introduced the Dual Attention module, whose
structure is shown in Figure 4 (b). This is a lightweight
and efficient attention mechanism that focuses on input
feature maps using two submodules: Channel Attention
and Spatial Attention. It significantly improves network
performance while maintaining low computational cost.

The Channel Attention module first applies average
pooling along the channel dimension of the input image to
generate channel weight coefficients. Then, two convolu-
tional layers are used to compute the channel attention.
Finally, the Sigmoid activation function is applied to ob-
tain the normalized attention weights. X_ represents the
feature map of the c-th channel of the input X, while W,
and W, are the weights of the convolutional layers, and o
denotes the Sigmoid activation function

AvgPool (X) = z zx #(1)

s=o(W,- ReLU(W1 z))#(2)

x, =x - 2,#(3)

ca

The Spatial Attention module focuses on the impor-
tance of each position in the spatial dimension of the fea-
ture map, emphasizing the target regions and key pixels.
It first applies average pooling and maximum pooling to
each input channel to capture spatial information. The re-
sults of these two pooling operations are then concatenat-
ed together. A convolutional layer is used to compute the
spatial attention weights. Finally, these spatial attention
weights are applied to the output to produce the final
weighted output x

out*®

1 C
avg_out = E(Zx #(4)

c
max_out = max x #(5)

c=

X

- a#(6)

In the network’s bottleneck, we introduced the Pyra-
mid Pooling module (Figure 4(c) ), which enhances the
model’s expressive capability by extracting multi-scale
features through pooling at different scales. The module
includes several steps: pooling at various scales, feature
fusion, and convolutional output. First, we apply aver-
age pooling to the input feature map, followed by a convo-
lution to reduce its channel number. These pooled fea-
ture maps are added to a feature list, forming a multi-
scale set. Each pooled result is resized using Bilinear In-
terpolation to match the original input. The multi-scale
features are then concatenated with the input and passed
through a 1X1 convolution to obtain the final output fea-
ture map. The mathematical expression for this module
is:

out — Xea

= AdaptiveAvgPool2d (x, pool_size ) #(7)

2 ool_size
c
Lon\ COHVZd pool_size B 1 # ( 8)
Z,ied = Interpolate (zwm, ,size(H,W) , mode =
Bilinear ) #(9)
2 concat — [xvzpool,size (92 pool_size 2" " " B pool_size , i| # ( 10 )
nmpul COHVZd ( (()ncal 5C7 1 ) # ( 1 1 )
C.HW;
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Figure 4 (a) is the schematic diagram of the Residual Dense Fu-

sion Block process, (b) is the schematic diagram of the Dual At-
tention mechanism, and (¢) is the schematic diagram of the Pyra-
mid Pooling module.
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The loss function is a method for quantifying the dif-
ference between the model’s predictions and the true la-
bels. During training, by minimizing the loss function,
the model continuously adjusts its parameters to reduce
prediction errors. For denoising tasks, the choice of loss
function affects the model’s sensitivity to noise and its
ability to preserve details. MS_SSIM_L1_LOSS com-
bines the advantages of MS-SSIM and L1 loss, enabling
structural perception and pixel difference constraints in
the image. This ensures the reconstructed image is nu-
merically closer to the target image, avoiding the color bi-
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as issue that may arise from using MS-SSIM alone. 0 with probability p,
Therejfor(?, we choose MS_SSIM_L1_LOSS as the loss 1'(x,y) _ 255 with probability p, #(14)
function in this paper.
I(x,y)  with probability 1 — p, - p,

2 Experiments

We tested the model on an NVIDIA GeForce RTX™
4090 D GPU with an initial learning rate of 0. 0001 and
the Adam optimizer, which adapts the learning rate for
each parameter, allowing faster convergence than SGD,
especially in complex deep networks. Adam adjusts the
learning rate dynamically, improving convergence speed
and robustness. To train the model on diverse sensor
noise, we added noise to the DIV2K dataset, simulating
Gaussian, Poisson, and Salt-and-Pepper noise, com-
bined with CMOS readout circuit non-uniformity. These
types of noise were superimposed onto the images.

Gaussian noise follows a normal distribution, with
values centered around a mean, and most values concen-
trated near it. It is primarily caused by low illumination,
uneven brightness during image capture, and thermal or
electronic noise from the photodetector. In images, this
noise appears as random pixel value fluctuations, creat-
ing a grainy or blurry effect. The probability density func-
tion of Gaussian noise is defined by the variable z (pixel
value) , the mean W (center of the noise curve), and the
standard deviation o, which determines the curve's

width.

1 —(z-pn)?

—e > #(12)
Voo
Poisson noise is proportional to the signal intensity
and primarily originates from the statistical fluctuation of
photons. Specifically, the fundamental cause of Poisson
noise is the randomness of photons hitting the pixel sur-
face. At any given time, the number of photons hitting
the pixel surface is a random variable that follows a Pois-
son distribution. This means that under the same lighting
conditions, different pixels or the same pixel at different
times will receive varying numbers of photons, leading to
random changes in pixel values in the image. It is usual-
ly more noticeable in low light intensity scenes and
causes different random noise levels between bright and
dark areas of the image. The probability mass function
formula is as follows, where K represents the number of
events, and Arepresents the average number of events oc-
curring in a unit of time or space.
e A
Px=k)=""
Salt-and-pepper noise appears as random black and
white dots, where some pixels are exiremally set to 0
(black) or 255 (white). This type of noise is usually as-
sociated with data transmission errors or image sensor
malfunctions. In the image, it results in isolated bright
or dark spots, with the surrounding pixels unaffected.
The original pixel value I(x,y) and the pixel value

p(z) =

#(13)

I'(x, y) after salt-and-pepper noise can be represented by
the following formula, where p, and p, are the probabili-
ties that the pixel value becomes 0 and 255, respective-
ly.

In addition, the non-uniformity in the images cap-
tured by quantum dot focal plane detectors is typically
caused by the column-level op-amp process deviations in
the CMOS readout circuit. Since each column of pixels
shares a single output buffer, manufacturing process de-
viations result in certain differences in the gain and offset
of the column-level buffers[29]. This difference can be
divided into DC and AC components. The DC component
refers to fixed gain and offset differences across chan-
nels, while the AC component reflects channel drift over
time, influenced by factors like temperature and environ-
mental conditions. To construct the labels, non-uniformi-
ty can be simulated with randomly placed light and dark
stripes of varying intensities. N represents the number of
stripes (equal to the number of pixel columns), and k de-
notes the stripe number. This non-uniformity doesn’t vi-
sually affect the image’s brightness and rarely results in
purely bright or dark stripes. Therefore, when simulating
non-uniformity, it should be evenly distributed around
(-255, 255). The following formula can be used for sim-

ulation:
OISy, . (1. = max ( - 255,min (255,image (y,x) +

N-1

N I[M’wa\)(x))) (15)

k=0

In quantum dot focal plane detector fabrication,
spin-coating the quantum dot material onto the CMOS cir-
cuit creates ring-like noise patterns due to surface protru-
sions. These patterns resemble salt-and-pepper noise but
have non-extreme pixel values and a nonlinear response
to light. We classify them as pixel defect noise, which
can reduce image quality by showing abnormal behavior
under most lighting conditions.

When constructing the dataset, in addition to add-
ing the above noise and stripe non-uniformity, we also
added pixel defect noise to better match the images actu-
ally captured by the quantum dot focal plane detector.
The construction process is shown in Figure 5. We ran-
domly selected images from the DIV2K dataset, divided
them into 128x128 sub-images, and then applied the
noise addition method described above. Stripe non-uni-
formity (Figure 5 (b) ) and the aforementioned noise
(Figure 5(c)) were added to the original image (Figure 5
(a) ). This resulted in a training set with 7, 000 images
and a validation set with 700 images, which were used
for model training, validation, ablation experiments,
and performance comparisons with other research works.

We performed denoising on the images actually cap-
tured by the PbS quantum dot photodetector, as shown in
Figure 6. (a) is the raw image, where the circular and
square black masks are 940nm long-pass filters that
block visible light and allow near-infrared light to pass
through. (b) is the image captured by the PbS quantum
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Figure 5 This set of images illustrates the construction of the training dataset for the model. We selected images from the DIV2K datas-
et, converted them to grayscale, and cropped them to 128128 size. We then simulated the noise types the PbS quantum dot detector
might encounter in real applications and added them to create the training and validation sets. (a) is the original image, (b) shows the
image with added non-uniform noise, (¢) features a mix of Gaussian, salt-and-pepper, Poisson, and uniform noise, and (d) combines
non-uniform noise with the mixed noise from (c).
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dot photodetector under tungsten light illumination,
where the tungsten light source contains infrared compo-
nents. After filtering, the hand and the letters in the
badge are clearly visible. However, the image still con-
tains significant noise and stripe non-uniformity. We
used the trained model to process (b), resulting in image
(¢). As seen, the noise in the actual captured image has
been largely removed, the image non-uniformity has
been significantly reduced, and the details and edges of
the object being measured have been preserved as much
as possible.

(@)

We also used the UNet and RDUNet networks to
process the actual captured images, and the results are
shown in Figure 7. For complex patterns like the badge,
DRPUNet achieves better results, while for simpler pat-
terns like the letters A and B, DRPUNet demonstrates
better denoising performance for dense pixel defect noise
compared to UNet and RDUNet.

We then used PSNR and SSIM as image evaluation
metrics to assess the images processed by the proposed
model. We used the BCDS public dataset as the test set.
Since the array size of our detector’s readout circuit is
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Figure 6 This set of images demonstrates the model's processing effect on images actually captured by the PbS focal plane detector. (a)
is a real photograph taken by the camera, with black circular and square shapes representing silicon wafers. (b) is the near-infrared im-
age captured by the PbS focal plane detector. (c) is the final processed image by the model.
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(a) Original  (b) RDUNet

(c)UNet  (d) DRPUNet

Figure 7 We used three images actually collected by PbS quantum dot photodetectors (Image. 1, Image. 2, Image. 3) to test the RDU-

Net, UNet and BUNet models.
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128%128, we selected a portion of images for cropping,
resulting in a test set with 408 images and labels. Noise
was artificially added to the test set in the same way as
the training set to evaluate the model’s performance. Us-
ing the same hyperparameters, we denoised the dataset
using UNet, RDUNet, and our proposed DRPUNet. The
results are shown in Table 1. As seen, our model outper-
forms both UNet and RDUNet in denoising performance,
while having fewer parameters than RDUNet, achieving
better results in a shorter training time.

Table 1 We used the BCDS dataset to compare the de-
noising performance of UNet, RDUNet, and
DRPUNet, with PSNR and SSIM as evaluation
indicators for denoising effectiveness. After
training for the same number of epochs with
the same dataset, DRPUNet was able to
achieve better denoising performance.

F1 FAF A BCDS ##EE 3T LL 7 UNet,RDUNet #1 DRPU-
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Method PSNR SSIM
UNet 33.0678 0. 9660
RDUNet 36. 6307 0. 9828
DRPUNet 38.7101 0. 9865

Table 2. Ablation experiment: The individual mod-
ules and their pairwise combinations are kept separately,
trained under the same conditions, and tested with the
same dataset. The results ultimately prove that the inclu-
sion of these modules positively enhances the perfor-
mance of the U-Net network, and the simultaneous intro-
duction of all three modules leads to the best denoising
performance of the model.
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Table 1 We used the BCDS dataset to compare the de-
noising performance of UNet, RDUNet, and
DRPUNet, with PSNR and SSIM as evaluation
indicators for denoising effectiveness. After
training for the same number of epochs with
the same dataset, DRPUNet was able to
achieve better denoising performance.
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Net i) £ IR £ 48, LA PSNR # SSIM £ A X R R K T 1547

T R R HE S %8R E A H S, DRPUNet BEM3 LI E

RH £ R,

After confirming that our model outperforms others in denoising
under the same training conditions, we conducted ablation ex-
periments to verify the positive contribution of each module.
Since ablation studies on the traditional UNet Encoder—Decoder
structure are widely available, we focused on separately adding
modules to the UNet and combining them in pairs, comparing
the results to the DRPUNet network (see Table 2). The results
show that incorporating all three modules significantly improves
network performance over UNet, with the best denoising perfor-
mance achieved when all modules are included, outperforming
RDUNet. This confirms the effectiveness and rationale behind

these modules.

Residual Attention ASPP PSNR SSIM

N 38. 5684 0. 9860

N 33.4518 0. 9582

N 36.7511 0. 9809

N N 35.3125 0.9787

N N 38. 5407 0. 9862

N N 38.6719 0. 9863

N N N 38.7101 0. 9865
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3 Conclusion

This paper proposes a photodiode based on a normal-
incidence n-i-p structure to simplify quantum dot image
sensor manufacturing and reduce costs. It addresses both
traditional noise and unique noise accumulation caused
by the device fabrication process and circuit surface flat-
ness. A simulated dataset of detector-captured images
was created by modeling noise generation. A U-Net vari-
ant with multi-attention mechanisms, including contextu-
al frequency-adaptive wavelet transforms, illumination-
invariant frequency attention, and channel and spatial at-
tention modules, is introduced. Additionally, a Noise-
Selective Residual Learning Path (NSRL) with dynamic
selection separates noise and image details. The
MS_SSIM_L1_LOSS loss function ensures both structural
perception and pixel difference constraints, offering high
perceptual quality with low computational complexity.

While the proposed method performs well, it has
some limitations. The goal of image denoising is to re-
move noise while preserving important details, requiring
a balance between noise suppression and detail reten-
tion. Over-removal of noise can blur edges and lose de-
tails. Additionally, for practical use in quantum dot fo-
cal plane cameras, reducing computational parameters
without sacrificing performance is essential. Developing
a lightweight model for real-world deployment will be a
key focus for future improvements.
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