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Abstract： Near-infrared image sensors are widely used in fields such as material identification， machine vision， 
and autonomous driving.  Lead sulfide colloidal quantum dot-based infrared photodiodes can be integrated with sil⁃
icon-based readout circuits in a single step.  Based on this， we propose a photodiode based on an n-i-p structure， 
which removes the buffer layer and further simplifies the manufacturing process of quantum dot image sensors， 
thus reducing manufacturing costs.  Additionally， for the noise complexity in quantum dot image sensors when 
capturing images， traditional denoising and non-uniformity methods often do not achieve optimal denoising re⁃
sults.  For the noise and stripe-type non-uniformity commonly encountered in infrared quantum dot detector imag⁃
es， a network architecture has been developed that incorporates multiple key modules.  This network combines 
channel attention and spatial attention mechanisms， dynamically adjusting the importance of feature maps to en⁃
hance the ability to distinguish between noise and details.  Meanwhile， the residual dense feature fusion module 
further improves the network's ability to process complex image structures through hierarchical feature extraction 
and fusion.  Furthermore， the pyramid pooling module effectively captures information at different scales， improv⁃
ing the network's multi-scale feature representation ability.  Through the collaborative effect of these modules， the 
network can better handle various mixed noise and image non-uniformity issues.  Experimental results show that it 
outperforms the traditional U-Net network in denoising and image correction tasks.
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摘要：近红外图像传感器广泛应用于材料识别、机器视觉和自动驾驶等领域。基于硫化铅胶体量子点的红外
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光电二极管可以通过单一步骤与基于硅的读出电路集成。基于此，我们提出了一种基于 n-i-p结构的光电二

极管，去除了缓冲层，进一步简化了量子点图像传感器的制造工艺，从而降低了制造成本。此外，对于量子点

图像传感器在捕获图像时的噪声复杂性，传统的去噪和非均匀性校正方法往往无法达到最佳去噪效果。针

对红外量子点探测器图像中常见的噪声和条纹型非均匀性，开发了一种包含多个关键模块的网络架构。该

网络结合了通道注意力和空间注意力机制，动态调整特征图的重要性，以增强区分噪声和细节的能力。同

时，残差密集特征融合模块通过分层特征提取和融合，进一步提高了网络处理复杂图像结构的能力。此外，
金字塔池化模块有效地捕捉不同尺度的信息，提高了网络的多尺度特征表示能力。通过这些模块的协同作

用，网络能够更好地处理各种混合噪声和图像非均匀性问题。实验结果表明，它在去噪和图像校正任务中优

于传统的U-Net网络。
关 键 词：PbS量子点焦平面探测器；卷积神经网络；图像去噪；UNet

Introduction
With the increasing applications in industrial in⁃spection［1］， material sorting［2］， and autonomous driv⁃ing［3， 4］， the field of infrared sensing and imaging has attracted widespread attention from researchers.  Tradi⁃tional InGaAs and HgCdTe photodetectors require high-quality single-crystal substrates for fabrication and rely on indium bump flip-chip bonding to integrate with com⁃plementary metal–oxide–semiconductor （CMOS） read⁃out integrated circuits （ROIC）.  This not only increases the manufacturing cost and reduces the throughput but al⁃so significantly affects the resolution of focal plane photo⁃detector arrays， thereby limiting their application scenar⁃ios［5］.  Lead sulfide （PbS） colloidal quantum dot image sensors can be fabricated by directly spin-coating quan⁃tum dot materials onto the surface of the ROIC， eliminat⁃ing the need for flip-chipbonding.  Moreover， they can operate at room temperature， offering advantages in terms of manufacturing cost and array size scalability.PbS quantum dot infrared image sensors have emerged as a key research focus.  Liu et al［6］.  reported a near-infrared image sensor based on PbS quantum dots with an array size of 640×512［6］.  SWIR Vision Systems has developed multiple large-array PbS quantum dot cam⁃eras with resolutions of 1920×1080［7］， covering several spectral bands from near-infrared to shortwave infrared， with a maximum detection range of up to 2100 nm.  How⁃ever， these PbS quantum dot image sensors are typically based on p-i-n photodiodes［6， 8-10］.  The implementa⁃tion of the p-i-n structure generally requires the use of fullerene （C60） as a buffer layer.  While C60 materials ex⁃hibit excellent electron transport properties， they are ex⁃pensive and involve complex fabrication processes［11］， significantly increasing the overall structural complexity and manufacturing costs.In addition， image processing methods for photode⁃tectors have become a current research hotspot［12-15］.  On one hand， the shot noise， 1/f noise， and other noises from the front-end photodetector will couple with the noise of the back-end readout circuit as well as the noise introduced during signal transmission.  On the other hand， in different application scenarios， variations in temperature， light intensity， and signal transmission pro⁃cesses often result in the final captured images contain⁃ing various forms and intensities of noise.  Additionally， process deviations in CMOS readout circuits can lead to significant non-uniformity in the captured images， which 

is one of the main factors affecting the imaging quality of image sensors［16］.  Currently， methods for direct image processing in both the spatial domain and the frequency domain have been widely studied.  Traditional non-unifor⁃mity correction methods include calibration-based correc⁃tion methods［17， 18］、Scene-based correction methods
［19， 20］ and filter-based correction methods ［21， 22］，etc.  These methods can indeed achieve good results in image non-uniformity correction， but they also face some issues.  Calibration-based methods assume system stabili⁃ty， but factors like temperature drift， vibrations， and changes in light or detector performance can cause sensor response drift， leading to calibration failures.  These methods also require extensive data collection， which is time-consuming.  Scene-based correction methods de⁃pend on the scene and may introduce errors with dynamic changes.  Separating non-uniformity from scene informa⁃tion is challenging， especially in textured or high-fre⁃quency scenes， potentially distorting details.  Filter-based methods smooth non-uniformity， but also blur im⁃age details， especially at edges， and assume uniform non-uniformity， which isn't always the case in real-world scenarios.  After performing non-uniformity correction on an image， denoising is also a key step in improving the overall image quality.  Traditional image denoising meth⁃ods can generally be classified into spatial domain meth⁃ods［23］， frequency domain methods［24］， and trans⁃form domain methods［25］.  However， these methods may not be sufficient to capture all noise components when dealing with certain noise patterns.  Additionally， the parameter selection for frequency domain filtering can be challenging， and these methods are highly sensi⁃tive to spectral characteristics.  These factors， to varying degrees， limit the efficiency and application scenarios of photodetectors.This paper proposes and develops a photodiode based on a normal-incidence n-i-p structure.  Compared to the p-i-n structure， the n-i-p structure simplifies the manufacturing process and eliminates the need for the ex⁃pensive C60 buffer layer.  This not only reduces the overall manufacturing cost of the device but also simplifies the fabrication workflow， making it more suitable for large-scale production and commercialization.  We applied the detector to an array with a scale of 128×128， a pixel size of 15μm， and a readout circuit chip fabricated using a 180nm process， successfully fabricating a PbS quantum dot focal plane photodetector.  Subsequently， we simulat⁃ed potential noise scenarios that the quantum dot focal 
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plane detector might encounter during actual use.  Noise was artificially added to a public dataset， and based on UNet， we further designed an image processing algorithm that combines non-uniformity correction and image de⁃noising for the quantum dot focal plane detector.  This network model is a variant of UNet that incorporates vari⁃ous attention mechanisms and a residual dense feature fu⁃sion module， specifically designed for image denoising tasks in complex noisy environments.  The goal is to im⁃prove the reconstruction quality and detail restoration ca⁃pability of images under noise interference.  Experiments demonstrate that this model achieves better denoising re⁃sults in images with a mix of non-uniformity， image sen⁃sor noise， and quantum dot image sensor ring noise， sig⁃nificantly outperforming traditional UNet-based denois⁃ing methods.
1 Design and methods 

To integrate with the readout circuit， quantum dot photodiodes require a normal-incidence structure.  We designed an n-i-p normal-incidence structure， as shown in Figure 1（a）， consisting of a multilayer configuration of Au/ZnO/PbS/PbS-EDT/ITO.  In this structure， ZnO acts as the electron transport layer， PbS CQDs as the light-absorbing layer， PbS-EDT （The PbS CQD thin film， modified by 1，2-ethanedithiol solid-phase ligand exchange，） as the hole transport layer， and Indium Tin oxide as the transparent conductive electrode.  Compared to the p-i-n structure， the n-i-p structure simplifies the fabrication process and eliminates the need for the expen⁃sive C60 buffer layer.  The transmission electron microsco⁃py （TEM） image （Figure 1（b）） shows a cross-sectional view of our PbS photodiode.  The thickness of each layer in the device is uniform and dense， with clear interfaces.  The response wavelength range of this photodetector is 400-1100 nm.  To evaluate the photodiode's response to near-infrared light， we conducted current density–volt⁃age （J-V） measurements under 940 nm laser illumina⁃tion at different light intensities， as shown in Figure 1
（c）.  Initially， under dark conditions without illumina⁃tion， the photodiode's J-V curve exhibited clear diode 

rectification behavior.  The rectification ratio was approxi⁃mately five orders of magnitude， indicating excellent rec⁃tification performance.  Furthermore， the device demon⁃strated a low dark current density， approximately 0. 13 μA·cm ⁻ ² at a reverse bias of -0. 1 V， which reflects a low leakage current and ensures a high signal-to-noise ra⁃tio.  Under illumination， the device's photoresponse was tested across a range of 940 nm laser intensities， from 10 μW·cm ⁻ ² to 11 W·cm ⁻ ².  The results demonstrate that the photodiode maintained a nearly constant response rate of approximately 0. 3 A/W throughout the entire mea⁃surement range.  Furthermore， under reverse bias， the photocurrent remained almost constant， indicating that the device maintains efficient photoelectric conversion even at low reverse voltages.  This characteristic provides a strong foundation for the development of low-power， high-sensitivity PbS quantum dot image sensors.The readout circuit chip structure， shown in Figure 2， includes a 128×128 pixel array， column-level amplifi⁃ers， output buffers， and row-column selection circuits.  Each pixel measures 15 μm， with a full-well capacity of 6. 366 Me⁻.Neural networks， through extensive training， learn noise distributions and image characteristics， enabling them to adapt to complex noise patterns and diverse scene properties without relying on fixed assumptions.  This allows them to handle various types of noise and im⁃age non-uniformity， including mixed and time-dependent noise.  Convolutional Neural Networks （CNNs） extract multi-level features， effectively capturing both local and global details， and preserving edges and textures better than traditional methods.  By optimizing the input-output mapping through loss functions （such as MSSIM， MSE， L1）， neural networks eliminate the need for intermediate processes to separate noise from signal， enabling global optimization.  They can also update correction parameters in real-time in dynamic scenes， unaffected by time-de⁃pendent drift or background changes， while leveraging GPU acceleration to enhance efficiency compared to tra⁃ditional methods.U-Net was first proposed in 2015 ［26］.  Currently， U-Net is widely used in various computer vision tasks 

Figure 1　（a） Schematic diagram of the PbS CQDs photodiode.  （b） Cross-section TEM image of the PbS CQDs photodiode with a 
scale bar of 100 nm.（c） Semilog J-V curves of the device in the dark and under NIR （940nm） illumination at intensities from 10 μW ·
cm−2 to 11W·cm−2.
图 1　（a） PbS CQDs 光电二极管的示意图。（b） PbS CQDs 光电二极管的横截面 TEM 图像，比例尺为 100 nm。（c） 在暗环境和近红
外 （940nm） 照明下，设备的半对数 J-V 曲线，光强度范围从 0. 2 μW ·cm−2 到 2W·cm−2。
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［3］， especially for problems that require pixel-level pre⁃dictions， due to its efficient and accurate segmentation capabilities.  U-Net adopts an Encoder-Decoder architec⁃ture， where the encoding process extracts features and downsamples the image through a series of convolutional layers and max-pooling layers， gradually capturing high-level semantic features of the input image.  In the decod⁃ing process， upsampling and convolution layers are used to restore the feature maps and gradually recover the im⁃age's spatial resolution， achieving fine segmentation.  Some research has demonstrated that U-Net can also achieve good results in image denoising tasks ［27， 28］.  Javier et al.  proposed RDUNet， a neural network that combines Residual Networks， Dense Networks， and the U-Net structure， designed for image denoising and other low-level computer vision tasks.  Based on U-Net， we re⁃tained certain aspects of RDUNet's residual dense fea⁃ture fusion module and added the Pyramid Pooling mod⁃ule and Dual Attention module.  The main network struc⁃

ture is shown in Figure 3.We first introduced the Residual Dense Fusion Block， whose structure is shown in Figure 4（a）.  This is a network module that performs feature fusion using dense connections and residual mechanisms.  The mod⁃ule enhances information flow by progressively extracting and merging features， while the residual connections pre⁃serve the original input features.  The core of the module is a network made up of multiple Dense Connections.  The input to each layer is the output of all previous layers 
（including the original input x）.  The input feature map at the i-th layer is a concatenation of the outputs of all previous i layers， followed by ReLU activation， which further enhances the information flow， allowing each lay⁃er to make full use of features from previous layers.  The outputs from all layers are then concatenated into a larger feature map， further enhancing the model's expressive power， allowing each layer to learn diverse information from different levels.  The fused feature map is then pro⁃

Figure 2　（a） The overall structure diagram of ROIC chip， including the pixel circuit， row selection circuit， column selection circuit， 
column buffer， and output buffer.  （b） Pixel circuit structure schematic， including CTIA， CDS， and SF sections， with two output sig‐
nals， Vout1 and Vout2.  （c） Digital signal timing： The rising edge of SH1 coincides with the falling edge of RESET， while the falling 
edge of SH2 should occur before the rising edge of the RESET signal.  （d） Physical image of the chip： This chip is based on the 180nm 
process with an array size of 128×128.  There are 20 pads each on the top and bottom of the chip.
图 2　（a） ROIC 芯片的整体结构示意图，包括像素电路、行选择电路、列选择电路、列缓冲区和输出缓冲区。 （b） 像素电路结构示
意图，包括 CTIA、CDS 和 SF 部分，具有两个输出信号 Vout1 和 Vout2。 （c） 数字信号时序：SH1的上升沿和RESET的下降沿相重
合，而SH2的下降沿应在RESET信号的上升沿来临之前 （d） 芯片的实物图：该芯片基于 180nm 工艺，阵列大小为 128×128。芯片
的顶部和底部分别有 20 个焊盘。

Figure 3　The overall structure diagram of the DRPUNet network.  This network builds upon the traditional UNet architecture by adding 
a Pyramid Pooling module and incorporates a Dual Attention mechanism and a Residual Dense Fusion Block during the sampling pro‐
cess.
图3　DRPUNet 网络的整体结构示意图。该网络在传统的 UNet 架构基础上，添加了金字塔池化模块，并在采样过程中融合了双重
注意力机制和残差密集融合块。

4



XX 期 
Wang Hanting et al：A Multi-Attention Mechanism U-Net Neural Network for Image Correction of PbS Quan⁃

tum Dot Focal Plane Detectors

cessed by a 1×1 convolutional layer to produce the con⁃volved output x fused_final .  Finally， a residual connection adds the input x and x fused_final  together to obtain the final output x'.  This process ensures that the original input x information is not lost in the network， helping to alleviate the vanishing gradient problem and making it easier for the network to learn effective features.We introduced the Dual Attention module， whose structure is shown in Figure 4（b）.  This is a lightweight and efficient attention mechanism that focuses on input feature maps using two submodules： Channel Attention and Spatial Attention.  It significantly improves network performance while maintaining low computational cost.The Channel Attention module first applies average pooling along the channel dimension of the input image to generate channel weight coefficients.  Then， two convolu⁃tional layers are used to compute the channel attention.  Finally， the Sigmoid activation function is applied to ob⁃tain the normalized attention weights.  Xc represents the feature map of the c-th channel of the input X， while W1 and W2 are the weights of the convolutional layers， and σ denotes the Sigmoid activation function.
AvgPool (X ) = 1

H ⋅ W ∑
i = 1

H  ∑
j = 1

W  Xc,i,j # (1)
ẑc = σ (W2 ⋅ ReLU (W1 ⋅ zc ) ) # (2)

xca = x ⋅ ẑc # (3)
The Spatial Attention module focuses on the impor⁃tance of each position in the spatial dimension of the fea⁃ture map， emphasizing the target regions and key pixels.  It first applies average pooling and maximum pooling to each input channel to capture spatial information.  The re⁃sults of these two pooling operations are then concatenat⁃ed together.  A convolutional layer is used to compute the spatial attention weights.  Finally， these spatial attention weights are applied to the output to produce the final weighted output xout.

avg_out = 1
C ∑

c = 1

C  xc # (4)

 max_out = max
c = 1

C  xc # (5)
xout = xca ⋅ â# (6)

In the network's bottleneck， we introduced the Pyra⁃mid Pooling module （Figure 4（c））， which enhances the model's expressive capability by extracting multi-scale features through pooling at different scales.  The module includes several steps： pooling at various scales， feature fusion， and convolutional output.  First， we apply aver⁃age pooling to the input feature map， followed by a convo⁃lution to reduce its channel number.  These pooled fea⁃ture maps are added to a feature list， forming a multi-scale set.  Each pooled result is resized using Bilinear In⁃terpolation to match the original input.  The multi-scale features are then concatenated with the input and passed through a 1×1 convolution to obtain the final output fea⁃ture map.  The mathematical expression for this module is：

zpool_size =  AdaptiveAvgPool2d ( x, pool_size ) # (7)
zconv = Conv2d ( zpool_size , C

||  pool_sizes ,1) # (8)
z resized =  Interpolate ( zconv ,size (H,W ) , mode =

 Bilinear ) # (9)
zconcat = [ x,zpool_size 1,zpool_size 2,…,zpool_size n

] # (10)
zoutput = Conv2d ( zconcat ,C,1) # (11)

The loss function is a method for quantifying the dif⁃ference between the model's predictions and the true la⁃bels.  During training， by minimizing the loss function， the model continuously adjusts its parameters to reduce prediction errors.  For denoising tasks， the choice of loss function affects the model's sensitivity to noise and its ability to preserve details.  MS_SSIM_L1_LOSS com⁃bines the advantages of MS-SSIM and L1 loss， enabling structural perception and pixel difference constraints in the image.  This ensures the reconstructed image is nu⁃merically closer to the target image， avoiding the color bi⁃

Figure 4　（a） is the schematic diagram of the Residual Dense Fu‐
sion Block process， （b） is the schematic diagram of the Dual At‐
tention mechanism， and （c） is the schematic diagram of the Pyra‐
mid Pooling module.
图 4　（a） 是残差密集融合块过程的示意图，（b） 是双重注意力
机制的示意图，（c） 是金字塔池化模块的示意图。
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as issue that may arise from using MS-SSIM alone.  Therefore， we choose MS_SSIM_L1_LOSS as the loss function in this paper.
2 Experiments 

We tested the model on an NVIDIA GeForce RTX™ 4090 D GPU with an initial learning rate of 0. 0001 and the Adam optimizer， which adapts the learning rate for each parameter， allowing faster convergence than SGD， especially in complex deep networks.  Adam adjusts the learning rate dynamically， improving convergence speed and robustness.  To train the model on diverse sensor noise， we added noise to the DIV2K dataset， simulating Gaussian， Poisson， and Salt-and-Pepper noise， com⁃bined with CMOS readout circuit non-uniformity.  These types of noise were superimposed onto the images.Gaussian noise follows a normal distribution， with values centered around a mean， and most values concen⁃trated near it.  It is primarily caused by low illumination， uneven brightness during image capture， and thermal or electronic noise from the photodetector.  In images， this noise appears as random pixel value fluctuations， creat⁃ing a grainy or blurry effect.  The probability density func⁃tion of Gaussian noise is defined by the variable z （pixel value）， the mean μ （center of the noise curve）， and the standard deviation σ， which determines the curve's width.
p (z) = 1

2π σ
e

-( z - μ ) 2

2σ2 # (12)

Poisson noise is proportional to the signal intensity and primarily originates from the statistical fluctuation of photons.  Specifically， the fundamental cause of Poisson noise is the randomness of photons hitting the pixel sur⁃face.  At any given time， the number of photons hitting the pixel surface is a random variable that follows a Pois⁃son distribution.  This means that under the same lighting conditions， different pixels or the same pixel at different times will receive varying numbers of photons， leading to random changes in pixel values in the image.  It is usual⁃ly more noticeable in low light intensity scenes and causes different random noise levels between bright and dark areas of the image.  The probability mass function formula is as follows， where K represents the number of events， and λrepresents the average number of events oc⁃curring in a unit of time or space.
P (X = k) = e-λ λk

k! # (13)
Salt-and-pepper noise appears as random black and white dots， where some pixels are extremally set to 0 

（black） or 255 （white）.  This type of noise is usually as⁃sociated with data transmission errors or image sensor malfunctions.  In the image， it results in isolated bright or dark spots， with the surrounding pixels unaffected.  The original pixel value I ( x，y ) and the pixel value 
I' ( x，y ) after salt-and-pepper noise can be represented by 
the following formula， where ps and pp are the probabili⁃
ties that the pixel value becomes 0 and 255， respective⁃ly.

I'( x,y ) =
ì

í

î

ïïïï

ïïïï

0     with probability ps

255     with probability pp

I ( x,y )      with probability 1 - ps - pp

# (14)

In addition， the non-uniformity in the images cap⁃tured by quantum dot focal plane detectors is typically caused by the column-level op-amp process deviations in the CMOS readout circuit.  Since each column of pixels shares a single output buffer， manufacturing process de⁃viations result in certain differences in the gain and offset of the column-level buffers［29］.  This difference can be divided into DC and AC components.  The DC component refers to fixed gain and offset differences across chan⁃nels， while the AC component reflects channel drift over time， influenced by factors like temperature and environ⁃mental conditions.  To construct the labels， non-uniformi⁃ty can be simulated with randomly placed light and dark stripes of varying intensities.  N represents the number of stripes （equal to the number of pixel columns）， and k de⁃notes the stripe number.  This non-uniformity doesn’t vi⁃sually affect the image's brightness and rarely results in purely bright or dark stripes.  Therefore， when simulating non-uniformity， it should be evenly distributed around 
（-255， 255）.  The following formula can be used for sim⁃ulation：
noisyimage ( )y,x = max ( - 255,min (255,image ( y,x) +

∑
k = 0

N - 1  vk ⋅ 1[ )xk,xk + Ws
( x) ) )    (15)

In quantum dot focal plane detector fabrication， spin-coating the quantum dot material onto the CMOS cir⁃cuit creates ring-like noise patterns due to surface protru⁃sions.  These patterns resemble salt-and-pepper noise but have non-extreme pixel values and a nonlinear response to light.  We classify them as pixel defect noise， which can reduce image quality by showing abnormal behavior under most lighting conditions.When constructing the dataset， in addition to add⁃ing the above noise and stripe non-uniformity， we also added pixel defect noise to better match the images actu⁃ally captured by the quantum dot focal plane detector.  The construction process is shown in Figure 5.  We ran⁃domly selected images from the DIV2K dataset， divided them into 128×128 sub-images， and then applied the noise addition method described above.  Stripe non-uni⁃formity （Figure 5（b）） and the aforementioned noise 
（Figure 5（c）） were added to the original image （Figure 5
（a））.  This resulted in a training set with 7，000 images and a validation set with 700 images， which were used for model training， validation， ablation experiments， and performance comparisons with other research works.We performed denoising on the images actually cap⁃tured by the PbS quantum dot photodetector， as shown in Figure 6.  （a） is the raw image， where the circular and square black masks are 940nm long-pass filters that block visible light and allow near-infrared light to pass through.  （b） is the image captured by the PbS quantum 
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dot photodetector under tungsten light illumination， 
where the tungsten light source contains infrared compo⁃
nents.  After filtering， the hand and the letters in the 
badge are clearly visible.  However， the image still con⁃
tains significant noise and stripe non-uniformity.  We 
used the trained model to process （b）， resulting in image 
（c）.  As seen， the noise in the actual captured image has 
been largely removed， the image non-uniformity has 
been significantly reduced， and the details and edges of 
the object being measured have been preserved as much 
as possible.

We also used the UNet and RDUNet networks to 
process the actual captured images， and the results are 
shown in Figure 7.  For complex patterns like the badge， 
DRPUNet achieves better results， while for simpler pat⁃
terns like the letters A and B， DRPUNet demonstrates 
better denoising performance for dense pixel defect noise 
compared to UNet and RDUNet.

We then used PSNR and SSIM as image evaluation 
metrics to assess the images processed by the proposed 
model.  We used the BCDS public dataset as the test set.  
Since the array size of our detector's readout circuit is 

Figure 5　This set of images illustrates the construction of the training dataset for the model.  We selected images from the DIV2K datas‐
et， converted them to grayscale， and cropped them to 128×128 size.  We then simulated the noise types the PbS quantum dot detector 
might encounter in real applications and added them to create the training and validation sets.  （a） is the original image， （b） shows the 
image with added non-uniform noise， （c） features a mix of Gaussian， salt-and-pepper， Poisson， and uniform noise， and （d） combines 
non-uniform noise with the mixed noise from （c）.
图 5　这组图像展示了模型训练数据集的构建过程。我们从DIV2K数据集中选取了一些图像，转换为灰度图并裁剪为 128×128大
小。然后，我们模拟了PbS量子点探测器在实际应用中可能遇到的噪声类型，并将其人工添加到图像中，构建了训练集和验证集。
（a）为原始图像，（b）为添加了非均匀噪声的图像，（c）为混合了高斯噪声、椒盐噪声、泊松噪声和均匀噪声的图像，（d）为将非均匀噪
声与（c）中的混合噪声相结合的图像。

Figure 6　This set of images demonstrates the model's processing effect on images actually captured by the PbS focal plane detector.  （a） 
is a real photograph taken by the camera， with black circular and square shapes representing silicon wafers.  （b） is the near-infrared im‐
age captured by the PbS focal plane detector.  （c） is the final processed image by the model.
图 6　这组图像展示了模型对实际由PbS焦平面探测器捕获图像的处理效果。（a） 是相机拍摄的真实照片，其中黑色圆形和方形代
表硅片。（b） 是PbS焦平面探测器捕获的近红外图像。（c） 是模型最终处理后的图像。
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128×128， we selected a portion of images for cropping， resulting in a test set with 408 images and labels.  Noise was artificially added to the test set in the same way as the training set to evaluate the model's performance.  Us⁃ing the same hyperparameters， we denoised the dataset using UNet， RDUNet， and our proposed DRPUNet.  The results are shown in Table 1.  As seen， our model outper⁃forms both UNet and RDUNet in denoising performance， while having fewer parameters than RDUNet， achieving better results in a shorter training time.

Table 2.  Ablation experiment： The individual mod⁃ules and their pairwise combinations are kept separately， trained under the same conditions， and tested with the same dataset.  The results ultimately prove that the inclu⁃sion of these modules positively enhances the perfor⁃mance of the U-Net network， and the simultaneous intro⁃duction of all three modules leads to the best denoising performance of the model.
表 2 消融实验：分别保留各单独模块及其两两组

合，在相同条件下进行训练，并使用相同数据集进行
测试。结果最终证明，这些模块的引入对 U-Net 网络
的性能有积极提升作用，同时引入所有三个模块能使

Figure 7　We used three images actually collected by PbS quantum dot photodetectors （Image. 1， Image. 2， Image. 3） to test the RDU‐
Net， UNet and BUNet models.
图7　我们使用了三张实际由 PbS 量子点光电探测器收集的图像（图像 1、图像 2、图像 3）来测试 RDUNet、UNet 和 BUNet 模型。

Table 1　We used the BCDS dataset to compare the de⁃
noising performance of UNet, RDUNet, and 
DRPUNet, with PSNR and SSIM as evaluation 
indicators for denoising effectiveness. After 
training for the same number of epochs with 
the same dataset, DRPUNet was able to 
achieve better denoising performance.

表 1　我们利用BCDS数据集对比了UNet、RDUNet和DRPU⁃
Net的去噪性能，以PSNR和 SSIM作为去噪效果的评估指标。
在使用相同数据集训练相同周期数后，DRPUNet能够实现更
优的去噪性能。

Method
UNet

RDUNet
DRPUNet

PSNR
33. 0678
36. 6307
38. 7101

SSIM
0. 9660
0. 9828
0. 9865

Table 1　We used the BCDS dataset to compare the de⁃
noising performance of UNet, RDUNet, and 
DRPUNet, with PSNR and SSIM as evaluation 
indicators for denoising effectiveness. After 
training for the same number of epochs with 
the same dataset, DRPUNet was able to 
achieve better denoising performance.

表 1　我们利用BCDS数据集对比了UNet、RDUNet和DRPU⁃
Net的去噪性能，以PSNR和 SSIM作为去噪效果的评估指标。
在使用相同数据集训练相同周期数后，DRPUNet能够实现更
优的去噪性能。After confirming that our model outperforms others in denoising 

under the same training conditions， we conducted ablation ex⁃
periments to verify the positive contribution of each module. 

Since ablation studies on the traditional UNet Encoder-Decoder 
structure are widely available， we focused on separately adding 

modules to the UNet and combining them in pairs， comparing 
the results to the DRPUNet network （see Table 2）. The results 

show that incorporating all three modules significantly improves 
network performance over UNet， with the best denoising perfor⁃
mance achieved when all modules are included， outperforming 
RDUNet. This confirms the effectiveness and rationale behind 

these modules.
Residual

√

√
√
√

Attention

√

√

√
√

ASPP

√
√
√

√

PSNR
38. 5684
33. 4518
36. 7511
35. 3125
38. 5407
38. 6719
38. 7101

SSIM
0. 9860
0. 9582
0. 9809
0. 9787
0. 9862
0. 9863
0. 9865
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模型的去噪性能达到最佳。

3 Conclusion 
This paper proposes a photodiode based on a normal-incidence n-i-p structure to simplify quantum dot image sensor manufacturing and reduce costs.  It addresses both traditional noise and unique noise accumulation caused by the device fabrication process and circuit surface flat⁃ness.  A simulated dataset of detector-captured images was created by modeling noise generation.  A U-Net vari⁃ant with multi-attention mechanisms， including contextu⁃al frequency-adaptive wavelet transforms， illumination-invariant frequency attention， and channel and spatial at⁃tention modules， is introduced.  Additionally， a Noise-Selective Residual Learning Path （NSRL） with dynamic selection separates noise and image details.  The MS_SSIM_L1_LOSS loss function ensures both structural perception and pixel difference constraints， offering high perceptual quality with low computational complexity.While the proposed method performs well， it has some limitations.  The goal of image denoising is to re⁃move noise while preserving important details， requiring a balance between noise suppression and detail reten⁃tion.  Over-removal of noise can blur edges and lose de⁃tails.  Additionally， for practical use in quantum dot fo⁃cal plane cameras， reducing computational parameters without sacrificing performance is essential.  Developing a lightweight model for real-world deployment will be a key focus for future improvements.1.  Bagavathiappan， S. ， et al. ， Infrared thermogra⁃

phy for condition monitoring – A review.  Infrared Phys⁃ics & Technology， 2013.  60： p.  35-55.2.  Liu， T. ， et al. ， RISIR： Rapid Infrared Spectral 
Imaging Restoration Model for Industrial Material Detec⁃
tion in Intelligent Video Systems.  IEEE Transactions on Industrial Informatics， 2024： p.  1-1.3.  Choi， J. D.  and M. Y.  Kim， A Sensor Fusion 
System with Thermal Infrared Camera and LiDAR for Au⁃
tonomous Vehicles： Its Calibration and Application， in 
2021 Twelfth International Conference on Ubiquitous and 
Future Networks （ICUFN）.  2021.  p.  361-365.4.  Song， H. ， et al. ， Short-Wave Infrared （SWIR） 
Imaging for Robust Material Classification： Overcoming 
Limitations of Visible Spectrum Data.  Applied Sciences， 2024.  14（23）.5.  Malinowski， P. E. ， et al. ， Image sensors using 
thin-film absorbers.  Applied Optics， 2023.  62（17）： p.  F21-F30.6.  Liu， J. ， et al. ， A near-infrared colloidal quan⁃
tum dot imager with monolithically integrated readout cir⁃
cuitry.  Nature Electronics， 2022.  5（7）： p.  443-451.7.  Gregory， C. ， et al. ， 66-3： Invited Paper： Col⁃
loidal Quantum Dot Photodetectors for Large Format 
NIR， SWIR， and eSWIR Imaging Arrays.  SID Sympo⁃sium Digest of Technical Papers， 2021.  52（1）： p.  982-986.8.  Zhang， L. ， et al. ， High-Performance and Sta⁃
ble Colloidal Quantum Dots Imager via Energy Band En⁃
gineering.  Nano Lett， 2023.  23（14）： p.  6489-6496.

9.  Andresen， B. F. ， et al. ， Low-cost SWIR sen⁃
sors： advancing the performance of ROIC-integrated col⁃
loidal quantum dot photodiode arrays， in Infrared Tech⁃
nology and Applications XL.  2014.10.  Andresen， B. F. ， et al. ， Room temperature 
SWIR sensing from colloidal quantum dot photodiode ar⁃
rays， in Infrared Technology and Applications XXXIX.  2013.11.  Pan， Y. ， et al. ， Advances in photocatalysis 
based on fullerene C60 and its derivatives： Properties， 
mechanism， synthesis， and applications.  Applied Cataly⁃sis B： Environmental， 2020.  265.12.  Abbass， M. Y. ， et al. ， An Efficient Technique 
for Non-Uniformity Correction of Infrared Video Sequenc⁃
es with Histogram Matching.  Journal of Electrical Engi⁃neering & Technology， 2022.  17（5）： p.  2971-2983.13.  Li， Y. ， N.  Liu， and J.  Xu， Infrared scene-
based non-uniformity correction based on deep learning 
model.  Optik， 2021.  227.14.  Li， T. ， et al. ， Non-Uniformity Correction of 
Infrared Images Based on Improved CNN With Long-
Short Connections.  IEEE Photonics Journal， 2021.  13
（3）： p.  1-13.15.  Chen， X. ， et al. ， Infrared image denoising 
based on the variance-stabilizing transform and the dual-
domain filter.  Digital Signal Processing， 2021.  113.16.  Pipa， D. R. ， et al. ， Recursive algorithms for 
bias and gain nonuniformity correction in infrared videos.  IEEE Trans Image Process， 2012.  21（12）： p.  4758-69.17.  Sheng， M. ， J.  Xie， and Z.  Fu， Calibration-
based NUC Method in Real-time Based on IRFPA.  Phys⁃ics Procedia， 2011.  22： p.  372-380.18.  Wang， H. ， et al. ， An Adaptive Two-Point 
Non-uniformity Correction Algorithm Based on Shutter 
and Its Implementation， in 2013 Fifth International Con⁃
ference on Measuring Technology and Mechatronics Auto⁃
mation.  2013.  p.  174-177.19.  Lv， B. ， et al. ， Statistical Scene-Based Non-
Uniformity Correction Method with Interframe Registra⁃
tion.  Sensors （Basel）， 2019.  19（24）.20.  Hu， B. -L. ， et al. ， A novel scene-based non-
uniformity correction method for SWIR push-broom hyper⁃
spectral sensors.  ISPRS Journal of Photogrammetry and Remote Sensing， 2017.  131： p.  160-169.21.  Cao， Y. ， et al. ， A multi-scale non-uniformity 
correction method based on wavelet decomposition and 
guided filtering for uncooled long wave infrared camera.  Signal Processing： Image Communication， 2018.  60： p.  13-21.22.  Averbuch， A. ， G.  Liron， and B. Z.  Bo⁃brovsky， Scene based non-uniformity correction in ther⁃
mal images using Kalman filter.  Image and Vision Com⁃puting， 2007.  25（6）： p.  833-851.23.  Piyushbhai， P. D. ， et al. ， An Analytical Study 
of Spatial Domain Image Denoising Techniques.  Interna⁃tional journal of engineering research and technology， 2015.  4.24.  Li， C. ， Research on Image Denoising Method 
Based on Dual Frequency Domain Transform， in 2024 

9



红 外 与 毫 米 波 学 报 XX 卷

IEEE 6th Advanced Information Management， Communi⁃
cates， Electronic and Automation Control Conference （IM⁃
CEC）.  2024.  p.  861-864.25.  Roy， V. ， Spatial and Transform Domain Filter⁃
ing Method for Image De-noising： A Review.  Internation⁃al Journal of Modern Education and Computer Science， 2013.  5： p.  41-49.26.  Ronneberger， O. ， P.  Fischer， and T.  Brox， 
U-Net： Convolutional Networks for Biomedical Image 
Segmentation， in Medical Image Computing and Comput⁃
er-Assisted Intervention – MICCAI 2015.  2015.  p.  234-241.

27.  Gurrola-Ramos， J. ， O.  Dalmau， and T. E.  Alarcon， A Residual Dense U-Net Neural Network for Im⁃
age Denoising.  IEEE Access， 2021.  9： p.  31742-31754.28.  Fan， C. -M. ， T. -J.  Liu， and K. -H.  Liu， SU⁃
Net： Swin Transformer UNet for Image Denoising， in 
2022 IEEE International Symposium on Circuits and Sys⁃
tems （ISCAS）.  2022.  p.  2333-2337.29.  He， Z. ， et al. ， Single-image-based nonunifor⁃
mity correction of uncooled long-wave infrared detectors： 
a deep-learning approach.  Appl Opt， 2018.  57（18）： p.  D155-D164.

10


