文章编号:1001-9014(XXXX)XX-0001-10

DOI:10. 11972/j. issn. 1001-9014. XXXX. XX. 001

基于蝙蝠算法高斯锐化的星载全波形激光雷达滤波 处理技术研究

方强', 王虹1*, 何光辉2, 周政字', 曹峰玮', 宋庆和'

(1. 昆明理工大学理学院,云南昆明 650500;2. 舜宇光学科技(集团)有限公司,浙江宁波 351491)

摘要:星载全波形激光雷达作为一种先进的遥感技术,因其能够记录详细的地形和植被信息而在多个领域得到了 广泛应用。然而,星载全波形激光雷达数据在采集过程中会受到诸如暗电流、光电探测器性能、探测目标周边环境 和背景光等因素的影响,导致原始波形信号中存在显著噪声,对提取有效回波信息进行目标反演分析造成干扰。 针对现有经典滤波算法中普遍存在的波形幅值下降问题,提出了一种自适应的滤波补偿波形幅值方法,利用蝙蝠 算法优化高斯锐化算子参数,将高斯锐化算子与滤波后的波形数据进行卷积来实现波形补偿,自适应迭代确保补 偿效果达到最佳。针对 GEDI(Global Ecosystem Dynamics Investigation)回波数据进行实验验证,将文中方法与多种 滤波算法进行比较,经滤波后最高波峰幅值平均降低了9.0077count,经过高斯锐化补偿后的波形与原始波形的最 高波峰平均差值仅为0.0182count,且平均信噪比由30.0235dB提升至33.2609dB,相对提升了10.78%。结果表明 该方法结合滤波方法能够在去除噪声的同时,保留更多的原始波形特征信息,为进一步提取波形信息做地物参数 反演和目标分类提供更为精确的数据,并且对多种滤波方法均有适用性。 关键 词:星载激光雷达;全波形;高斯锐化;蝙蝠算法;滤波 中图分类号:TN958.98 文献标识码:A

Research on Spaceborne Full-Waveform Lidar Filtering Processing Technology Based on Bat Algorithm Gaussian Sharpening

FANG Qiang¹, WANG Hong^{1*}, HE Guanghui², ZHOU Zhengyu¹, CAO Fengwei¹, SONG Qinghe¹
(1. College of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, China;
2. Sunny Optical Technology (Group) Company Limited, Ningbo, Zhejiang 351491, China)

Abstract: Spaceborne full-waveform lidar, as an advanced remote sensing technology, has been widely applied in various fields due to its ability to record detailed terrain and vegetation information. However, the data from spaceborne full-waveform lidar can be affected by factors such as dark current, photodetector performance, the surrounding environment of the target being detected, and background light during the acquisition process. These factors introduce significant noise into the original waveform signals, interfering with the extraction of effective echo information for target inversion analysis. To address the common problem of waveform amplitude reduction in existing classical filtering algorithms, this paper proposes an adaptive filtering compensation method for waveform amplitude. By utilizing the bat algorithm to optimize Gaussian sharpening operator parameters and convolving the Gaussian sharpening operator with the filtered waveform data, waveform compensation is achieved through adaptive iteration to ensure optimal compensation effects. This paper conducts experimental verification on GEDI (Global Ecosystem Dynamics Investigation) echo data, comparing the proposed method with various filtering algorithms. After filtering, the highest peak amplitude was reduced by an average of 9. 0077 count, while the difference between the highest peaks of the waveform after Gaussian sharpening compensation and the original waveform was only 0. 0182 count on average. Moreover, the average signal-to-noise ratio improved from 30. 0235dB to 33. 2609dB, representing a relative increase of 10. 78%. The results indi-

收稿日期:2024-12-05, Received date: 2024-12-05,

基金项目:国家自然科学基金(62165007)

Foundation items: Supported by the National Natural Science Foundation of China (62165007);

作者简介(Biography):方强(2000年3月),性别男,云南省红河州泸西人,硕士生,主要研究领域为GEDI星载激光雷达回波数据处理,E-mail: 318771545@qq.com

^{*}通讯作者(Corresponding author): 王虹, E-mail: wanghongee@163.com

cate that this method, in conjunction with filtering methods, can remove noise while retaining more of the original waveform feature information. This provides more accurate data for further extraction of waveform information for geophysical parameter inversion and target classification and is applicable to a variety of filtering methods. **Key words**: spaceborne lidar, Full Waveform, Gaussian Sharpening, Bat Algorithm, Filtering

PACS:

引言

星载全波形激光雷达作为一种先进的遥感技 术,通过发射激光脉冲并记录回波信号的完整波^[1], 不仅反映了目标的高程,还能从中提取出目标结 构、反射特性和地形特征等信息,在海洋生物探测、 地物分类、林业监测、低层风切变强度测试、大气气 溶胶反演等方面具有重要的应用价值^{[2][3]}。机载的 全波形激光雷达系统如LVIS(Laser Vegetation Imaging Sensor)、ABL(Airborne LiDAR Bathymetry),通过 安装在飞机或其他飞行平台上,提供高精度的空间 分辨率和细致的地物特征描述[4][5]。然而,与星载 全波形激光雷达相比,机载系统在覆盖范围、观测 频率以及数据连续性方面存在明显局限[6]。星载的 全波形激光雷达系统,如美国国家航空航天局 (NASA)的 ICESat/GLAS(Ice, Cloud and land Elevation Satellite/ Geoscience Laser Altimeter System) 和 GEDI(Global Ecosystem Dynamics Investigation),以 及中国的高分七号卫星激光测高仪(GF-7)等,已经 在全球范围内获取了大量的高精度三维地形信 息[7][8][9]。然而,无论是机载系统还是星载系统,激 光雷达在激光发射、传播和接收过程中不可避免地 会受到暗电流、大气散射等干扰^{10]},导致波形数据 中存在噪声,表现为波形上的毛刺或者整体抬升。 为了提高波形的质量,通常采用滤波的方法去除噪 声,从而确保后续研究中进行数据处理和分析的 精度。

目前对全波形激光雷达数据进行滤波已有深 入地研究。Jianhua Chang等对瑞利-拉曼-米激光 雷达的信号进行了经验模态分解(Empirical Mode Decomposition, EMD),对分解的噪声本征模态函数 (Intrinsic Mode Functions, IMF)使用小波软阈值滤 波和粗糙惩罚平滑技术控制滤波波形的平滑度,最 大程度地保持有效信号的完整性^[11]。左志强等提 出了一种适用于GF-7全波形信号的自适应高斯滤 波器,该滤波器根据波形噪声特点和波峰偏移等结 构特征动态调整滤波器脉宽,该方法具有较高的精 度和普适性,能有效提高高斯分解参数的分解精 度^[12]。李连营等提出了一种基于l₁趋势滤波的分段 自适应范数方法,用于对ICESat/GLAS波形数据进 行去噪,能降低有效信号的平滑度,尽可能地抑制 背景噪声并保留波形的幅值和结构^[13]。张志杰等 提出了EMD-Hurst滤波方法,计算赫斯特指数以区 分IMF中的噪声分量和信号分量,有效减少了重建 ICESat/GLAS信号的过拟合现象^[14]。此外,他们还 提出了结合了EMD和小波滤波策略的EMD-AdaptiveP方法,通过IMF和残余项的反向叠加重建ICE-Sat/GLAS有效波形信号以实现滤波,并能够自适应 地区分信号与噪声^[15]。Wenjing Li等提出了使用 EMD 对 ALB全波形信号进行多层分解,并通过Savitzky-Golay(S-G)滤波器对噪声 IMFs进行滤波的 EMD-MRA方法,减少了信号失真,提高了水下地形 提取的准确性^[16]。

目前的滤波方法能有效去除噪声并尽可能地 保留信号,但大多会因为平滑效应导致波形幅值下 降。波形幅值的大小反映地物反射特性、地表粗糙 度和大气散射等因素[17],波形滤波过程中波形幅值 下降过多会影响波形幅值参数的准确提取,对后续 进行地物特征识别和目标参数反演、区域大数据分 析等产生不利的影响。针对这一问题,本文提出了 一种自适应的滤波波形幅值补偿方法,使用蝙蝠算 法计算最佳的高斯锐化算子参数,将滤波后波形与 高斯锐化算子进行卷积来实现波形幅值补偿,利用 蝙蝠算法自适应确定波形锐化算子参数,使补偿效 果达到最佳。通过使用这种自适应的滤波波形幅 值补偿方法,可以使得波形滤波后保留更多的有效 信息和波形特征,由此提高后续进行波形地物类型 分类的精度。在对GEDI星载激光雷达回波信号进 行实验验证中,本文使用了四种不同的滤波方法, 并对每种方法的滤波结果进行高斯锐化补偿。此 外,还对滤波后的波形和补偿后的波形进行了定量 评价。

1 全波形激光雷达数据滤波

全波形激光雷达数据包含了目标反射的完整 回波信号,这些信号携带了丰富的信息,如地面起 伏、粗糙度、地物高度等。由于各种噪声源的干扰, 原始回波数据包含大量噪声信号,对原始波形进行 滤波处理,是有效提取波形信号参数,进行数据应 用的前提。

1.1 提取信号波段

为了进行针对性地滤波,提高滤波效果和计算 效率,在对激光雷达回波数据滤波前,首先要进行 信号波段的提取。基本步骤如下:1)首先确定回波 中超过三倍背景噪声标准差的最高波峰点,然后从 该波峰点向左右两侧分别寻找波谷点,该波谷点需 满足两个条件:1. 波谷值小于零;2. 该波谷与其外 侧的下一个波峰之间的差值要大于一倍背景噪声 标准差。2)从这些波谷点向内侧寻找第一个大于 零的点,这两个点记为信号节点,两个信号节点之 间的波形即为信号波段。3)将信号波段由原波形 中提取出来,然后由下一个超过三倍背景噪声标准 差的最高波峰点开始,继续提取信号波段,直至剩 下的波形最高波峰点小于三倍背景噪声标准差。 4)将所有提取出的信号波段进行组合,得到完整的 信号波段。

1.2 全波形激光雷达数据滤波方法

目前,针对全波形激光雷达回波数据的降噪处 理方法主要有高斯滤波、小波滤波、卡尔曼滤波、 EMD滤波等。

高斯滤波是使用一维高斯函数的一阶导数作 为核函数,通过与原始信号卷积,实现对每个数据 点及其邻域内的值进行正态分布的加权平均,达到 滤波效果。小波滤波是利用小波变换将信号转换 至时频域,分解为多个频率子带,再对所得小波系 数应用阈值处理信号与噪声,最后再通过逆小波变 换重建得到滤波波形^[18]。卡尔曼滤波是一种时域 递归滤波技术,该方法结合系统的先验信息和新观 测数据,通过不断迭代预测和更新两个步骤,优化 状态估计和不确定性,实现波形状态的最优估 计^{[19][20][21]}。EMD滤波是一种自适应的非线性、非平 稳信号处理方法,该方法通过将波形分解为若干个 IMF和一个残余项,以特定的方法区分噪声IMF和 信号 IMF 后将其选择性地处理或保留,最终将所有 IMFs和残余项叠加得到降噪后的波形。

2 基于蝙蝠算法的高斯锐化波形处理技术

2.1 蝙蝠算法

蝙蝠算法是由Xin-She Yang提出的一种模拟 蝙蝠回声定位理论进而形成的元启发式智能寻优 计算模式^[22],能够在全局搜索与局部搜索之间进行 平衡,以其简单、性能好、能够产生高质量的解而闻 名^[23]。该算法实现的具体步骤如下:

步骤1:确定目标函数并初始化相关参数。这 包括设置蝙蝠群体的位置*X_i*(其中*j*=1,2,3,..,N,N 为蝙蝠群体的数量)和速度*v_j*。定义第*j*只蝙蝠在位 置*X_i*处的脉冲频率*F_j*,初始化脉冲发生率*r_j*及响 度*A_i*。

步骤2:计算每只蝙蝠在其初始位置的适应度。

步骤3:通过调整频率,使用下列公式更新蝙蝠的速度和位置*X*,而产生后代个体:

$$F_{j} = F_{min} + \beta \left(F_{max} - F_{min} \right), \tag{1}$$

$$v_{i}^{\tau} = v_{i}^{\tau-1} + \left(X_{i}^{\tau} - X_{*}\right)F_{i}, \qquad (2)$$

$$X_{i}^{\tau} = X_{i}^{\tau-1} + v_{i}^{\tau}, \qquad (3)$$

式中, $\beta \in [0,1]$,是一个随机向量, τ 为蝙蝠运动的时间,算法运行的迭代次数, F_j 为蝙蝠j的脉冲频率,频率的调整范围为 $[F_{min}, F_{max}], X_*$ 是当前群体中局部最优解的位置。

步骤4:若生成的随机数大于脉冲发生率r_i,则 在当前所有个体中选择一个全局最优个体*X*。,且在 选择的最优个体附近使用下面公式产生一个局部 个体,并计算这个局部个体的位置:

$$X_{new} = X_{ald} + \varepsilon A^{\tau}, \tag{4}$$

式中, $\varepsilon \in (-1,1)$,是一个随机数; A^r 是整个群体在同一代中的平均响度, X_{old} 为最优个体的原始位置, X_{new} 为最优个体的更新位置。

步骤5:如果由步骤4产生的局部个体的适应度 值比全局最优个体有所改进,并且一个产生的随机 数小于响度A^r_j,则接受这个新解作为当前的全局最 优个体。随后,根据以下公式更新r^r和A^r_j:

$$r_j^{\tau+1} = r_j^0 \left[1 - \exp\left(-\gamma\tau \right) \right], \tag{5}$$

$$A_i^{\tau+1} = \alpha A_i^{\tau}, \tag{6}$$

式中, $\alpha \in (0,1)$,是声波响度衰减系数; $\gamma > 0$,是脉冲强度增强系数; r_i° 表示蝙蝠i初始脉冲频率。

步骤6:更新算法的迭代次数,并检查是否达到 终止条件。如果满足终止条件,则算法结束;否则, 转到步骤3继续迭代过程。

2.2 高斯锐化波形补偿处理

为了解决滤波引起的信号畸变,如波峰幅值降低和波谷升高(其中波峰幅值降低尤为明显)。本 文通过将高斯锐化算子^[24]与滤波波形进行卷积,恢 复滤波过程中畸变的峰谷值,并使用蝙蝠算法优化 高斯锐化算子的参数,自适应地将补偿效果调整至 最佳,实现噪声减少与信号质量保持之间的平衡。 流程图如图1所示。

高斯锐化算子g(t)的公式为

$$\begin{cases} g(t) = f_g(t) - k f_g^2(t) \\ f_g(t) = A_g \exp(-\frac{(t - \mu_g)^2}{2\sigma_g^2}), \\ k = \lambda \frac{L_g^2}{32}, \lambda \ge 1 \end{cases}$$
(7)

式中,k为高斯锐化因子, A_g 、 μ_g 、 σ_g 、 L_g 分别为高斯锐 化算子的峰值、峰位、脉宽和半窗宽, λ 为高斯锐化 因子的系数。

为保证滤波后波形与高斯锐化算子卷积后峰 面积不变,需要将高斯锐化算子进行归一化

$$\int_{-L_s}^{L_s} g(x) = 1, \qquad (8)$$

归一化后, A_s 将不会对滤波波形造成影响, μ_s 取 值为0。而 σ_s , L_s , λ 三个参数的选择会影响波形补 偿的效果,且当 λ >1时,高斯锐化算子才会产生锐化 效果。

由于高斯锐化算子的参数选择直接影响锐化 效果,不当的参数设置可能导致波形出现严重畸 变。为此,本文通过能快速寻优的蝙蝠算法来优化 参数组合,实现滤波后的自适应补偿,从而得到既 去除了噪声又保持了接近原波形幅值的波形。

将高斯锐化算子的初始值组合作为蝙蝠算法的初始位置*X*。

$$X_{0} = \begin{bmatrix} L_{g0} \\ \boldsymbol{\sigma}_{g0} \\ \boldsymbol{\lambda}_{0} \end{bmatrix}, \qquad (9)$$

设定初始参数组合为

$$\begin{cases} L_{g0} = round(\frac{n}{10}) \\ \sigma_{g0} = \sigma_{tx} \\ \lambda_0 = 1 \end{cases},$$
(10)

式中, L_{a0} 、 σ_{a0} 、 λ_{0} 为初始的高斯锐化算子参数,分别

图1 蝙蝠算法高斯锐化流程图

Fig. 1 Bat Algorithm for Gaussian Sharpen Process Flowchart

是初始的半窗宽、脉宽和锐化算子系数, *n* 为回波波 形的数据点数, σ_ω为发射波形脉宽。

以尽可能小的适应度fitness₁为蝙蝠算法寻优目标,其公式为

$$fitness_{1} = RMSE_{1} + \left| \max\left(y_{sharpen}\right) - \max\left(y_{filter}\right) \right|$$
$$RMSE_{1} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[y_{sharpen}(t) - y_{filter}(t)\right]}, (11)$$

式中,*y*_{sharpen}为锐化波形,*y*_{filter}为滤波波形,*RMSE*₁为锐化波形和滤波波形的均方根误差。

2.3 评价指标

为了验证本研究波形补偿方法的性能,本文将 采用信噪比(Signal to Noise Ratio, SNR))、相关系数 R、均方根误差(root-mean-square error, RMSE)和最 大峰值差(Maximum Peak Difference, MPD)作为评价 指标,将原始波形分别与滤波处理的波形和高斯锐 化补偿处理的波形进行计算,以作比较。其中最大 峰值差用于衡量处理后的波形与原始波形之间的 最大峰值差异,从而评估波形幅值的补偿效果。

1) 信噪比表示为

$$SNR = 10 \log_{10} \left(\frac{\sum_{i=1}^{n} y'(t)^{2}}{\sum_{i=1}^{n} \left[y(t) - y'(t) \right]^{2}} \right), \quad (12)$$

式中y(t)为原始波形数据,y'(t)为处理后的波形数据。

2)相关系数表示为

$$R = \frac{cov(\gamma(t), \gamma'(t))}{\sigma_{\gamma} \sigma_{\gamma'}},$$
(13)

式中,cov(y(t), y'(t))为原始波形与处理后波形的

协方差, σ_y 和 σ_y 分别是原始波形和处理后波形的标准差。

3)均方根误差表示为

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [y(t) - y'(t)]^{2}}, \quad (14)$$

) 取入峰伹差表示万

$$MPD = \left| \max(y(t)) - \max(y'(t)) \right|, \quad (15)$$

3 实验结果与分析

3.1 实验数据与区域

实验数据为美国宇航局星载激光雷达 Global Ecosystem Dynamics Investigation(GEDI)观测平台的 GEDI 01B数据,从 https://lpdaac.usgs.gov进行下载,数据足迹的光斑直径约为25m,轨道方向上的光斑间隔大约为60-70m,光束的水平间隔约600m,光束数为8束,采样时间间隔为2ns^[25]。实验区域位于中国云南省昆明市内(经纬度覆盖范围为102°42′51″E~102°51′53″E、25°00′01″N~25°05′60″N)。图2展示了轨道文件名为GEDI01_B_201926011523 9_004326_02_T03756_02_005_01_V002.h5的数据足迹点,共计1345个足迹,数据采集时间为2019年9月7日。其中图2(a)为实验区域内所有的足迹点,图2(b)为图2(a)中白色区域内的足迹点。

3.2 实验结果与分析

本研究使用 GEDI 01B 中的回波数据(rxwaveform),并在数据处理使用了官方的数据背景噪声均 值(noise_mean_corrected)、背景噪声标准差 (noise_stddev_corrected,本文中记为δ)和发射波形

图 2 研究区域及足迹。(a)研究区域足迹点;(b)研究区域足迹局部图 Fig.2 Study Area and Footprint. (a) Footprint points of the study area; (b) Detailed map of the study area footprint.

脉宽(tx_egsigma,本文中记为σ_{tx})。在对波形进行 滤波前,先将整体波形减去背景噪声均值,然后通 过背景噪声标准差提取出波形中的信号波段。

将信号波段的波形分别使用高斯滤波、小波滤 波、卡尔曼滤波和EMD-MRA(EMD-based multiresolution analysis)进行滤波。高斯滤波器的脉宽设定 为与发射脉宽一致,滤波器长度设定为两倍发射波 形脉宽(取整)。小波滤波设定滤波层数为8,小波 类型为"db8"。卡尔曼滤波器设定状态转移矩和初 始误差估计矩阵为二维单位矩阵,观测矩阵为[1, 0],过程激励噪声协方差矩阵设定为0.01倍的二维 单位矩阵,测量噪声协方差设定为0.1,该滤波器会 产生2个单位的时间偏移,滤波后需进行延迟校正。 EMD-MRA方法是对波形 EMD 处理后通过连续均 方根误差(consecutive mean squared error, CMSE)的 计算区分噪声主导 IMF 和信号 IMF, 然后对噪声主 导的 IMF 进行离散余弦变换(discrete cosine transform, DCT)后补零再进行 DCT 逆变换, 接着再将处 理后的噪声主导的 IMF 进行第二层 EMD 处理, 再对 第二层噪声主导的 IMF 进行 S-G 滤波, 最后将 S-G 滤波后的 IMF 和两层信号主导的 IMF 结合重构得到 滤波波形[16]。

用蝙蝠算法寻优的高斯锐化算子对滤波后的 波形进行波形幅值补偿。设定高斯锐化算子的初 始半窗宽为波形数据长度的1/10(取整),初始脉宽 为发射波形脉宽,初始高斯锐化因子系数为1。设 定蝙蝠算法的蝙蝠群体数量N为20只,最高迭代次 数为100次。图3中分别显示了四种方法滤波后的 波形及经高斯锐化补偿幅值的波形。

图3为图2(b)中两个绿色足迹点的回波波形通 过四种滤波方法和高斯锐化补偿处理后的波形,其 中绿色足迹B的回波为建筑回波,绿色足迹A的回 波为森林回波。由图3可以看出,这四种滤波方法 中,高斯滤波和卡尔曼滤波的波形更为平滑,EMD-MRA的波形平滑程度最低,保留了更多的信号。但 每种方法在平滑波形的同时,都会导致波形幅值产 生不同程度的削弱,滤波后的波形越平滑,其幅值 降低的幅度就越大。这一现象在波峰处尤为明显, 滤波后的波峰相比原始波形的波峰,在顶部缺失了 一部分面积。如图3(a)(c)(e)(g)中最高波峰为例, 比较该波峰左右拐点间的面积,四种滤波方法滤波 后在该波峰处分别损失了151.63count²、37.41count ²、163.1955count²、17.38count²的幅值面积。而通过 高斯锐化补偿后的波形,不同滤波方法平滑后的波 峰幅值都得到了有效恢复,更接近原始波形。并且 这种补偿方法没有对滤波的效果造成显著干扰,补 偿后的波形趋势依然与滤波后波形保持一致,经过 高斯锐化补偿后的波形既去除了噪声,又有效恢复 波形的幅值。

图 4 为图 2(b) 所示蓝色足迹和绿色足迹的 15 组回波波形经处理后的评价指标。这些波形分别 经过四种滤波方法处理及其高斯锐化补偿处理,区 域范围为102°47′01″E~102°47′30″E,25°03′57″N~ 25°04′28″N。由图4(d)可以看出,经过高斯锐化补 偿后的15组波形相较于仅做滤波处理的波形,其波 形幅值都得到了有效补偿。补偿后的最大波峰与 原始波形最大波峰幅值之间差距保持在相对接近0 的范围内。此外,由图4(a)可以看出,通过对15组 数据应用高斯锐化补偿方法,面对四种不同的滤波 方法,都能有效提高信噪比,特别EMD-MRA处理 后再使用高斯锐化补偿后, 信噪比明显高于其他三 种方法滤波及其补偿的结果。由图4(b)-(c)可以 看出,高斯锐化补偿后的波形的相关系数比仅做滤 波处理的相关系数更高,且均方根误差均有所降 低,说明经过高斯锐化补偿后的波形会更接近原始 波形。

表1展示了图2(a)中实验区域内所有足迹的回 波波形经由四种不同滤波方法处理后,并采用高斯 锐化补偿技术优化后的评价指标均值。从表中可 以看出,分别用四种滤波方法处理后的波形经过高 斯锐化补偿后,都能有效补偿波形幅值,补偿波形 最大波峰幅值与原始波形最大波峰幅值之间的差 值由 10°count 数量级减小至 10⁻²count 数量级,相对 最大峰值差由 3.8633% 降至 0.0094%。此外,经过 高斯锐化后的波形与仅滤波处理波形相比, 信噪 比、相关系数和均方根误差的评价指标均明显改 善。四种滤波方法经过高斯锐化补偿后信噪比分 别提高了15.81%、4.29%、13.69%、10.60%,平均 信噪比由 30.0235dB 提升至 33.2609dB,相对提升 了 10.78%。均方根误差分别降低了 37.80%、 14.71%、34.81%、42.61%,平均均方根误差由 3.0450count 降至 2.0419count, 相 对 降 低 了 32.94%,且相关系数均有所改善。通过以上数据表 明,使用蝙蝠算法寻优的高斯锐化算子对滤波波形 进行处理,能够有效地补偿波形的幅值,提高波形 的质量,有效弥补因平滑效应丢失的部分信号。并 а

С

300

250

150

100

50

0

е

300

intensity/count 200

5 intensity/count h 350 time/ns

:图3四种滤波方法的滤波波形及其高斯锐化波形。(a)、(c)、(e)、(g)为建筑回波的滤波波形及其高斯锐化波形;(b)、(d)、(f)、(h)为森林回波 的滤波波形及其高斯锐化波形;(a)、(b)为高斯滤波;(c)、(d)为小波滤波;(e)、(f)为卡尔曼滤波;(g)、(h)为EMD-MRA滤波

Fig.3 The filtered waveforms and their Gaussian sharpened counterparts for four different filtering methods. (a), (c), (e), (g) show the filtered waveforms and their Gaussian sharpened counterparts for building echoes; (b), (d), (f), (h) show the filtered waveforms and their Gaussian sharpened counterparts for forest echoes; (a), (b) use Gaussian filtering; (c), (d) use wavelet filtering; (e), (f) use Kalman filtering; (g), (h) use EMD-MRA filtering.

:图4四种滤波方法处理的评价指标及其高斯锐化补偿处理的评价指标。(a)为信噪比;(b)为相关系数;(c)为均方根误差;(d)为最大峰值差 Fig.3 Evaluation indices for the processing of four filtering methods and evaluation indices for Gaussian sharpening compensation processing. (a) is the signal-to-noise ratio; (b) is the correlation coefficient; (c) is the root mean square error; (d) is the maximum peak difference.

表1	四种滤波方法处理的评价指标均值及其高斯锐化补偿处理的评价指标均值

 Table 1 Mean values of evaluation indices for the processing of four filtering methods and mean values of evaluation indices for Gaussian sharpening compensation processing

evaluation index	processing	Gaussian filtering	Wavelet filtering	Kalman filtering	EMD-MRA	mean
SNR	filtering	26. 4324	30. 8725	25. 5775	37.2116	30.0235
(dB)	sharpening	30. 6123	32. 1973	29.0778	41.1561	33.2609
D	filtering	0. 9940	0. 9981	0.9962	0. 9996	0. 9984
К	sharpening	0. 9959	0. 9983	0.9987	0. 9999	0.9992
RMSE	filtering	4.0367	2.2176	4. 7151	1.2104	3.0450
(count)	sharpening	2.5108	1.8914	3.0710	0.6946	2.0419
MPD	filtering	12. 7870	4. 4270	15.4231	3. 3926	9.0077
(count)	sharpening	0.0075	0.0228	0.0070	0.0356	0.0182

且使用 EMD-MRA 方法处理后再经过高斯锐化补偿的波形信噪比、相关系数和均方根误差的评价指标结果最好,说明该方法处理后的波形质量最高。

4 结论

本文针对全波形激光雷达数据经过滤波处理 后,因平滑效应导致波形幅值降低丢失部分波形特 征信息的问题,提出了基于蝙蝠算法高斯锐化的滤 波波形的幅值补偿方法。该方法通过将滤波后的 波形与高斯锐化算子进行卷积,并利用蝙蝠算法优 化高斯锐化算子参数,实现了对滤波波形幅值的有 效补偿。本文对多种滤波方法处理后的数据进行 高斯锐化补偿处理,结果表明本种方法不仅能有效 恢复波形的幅值,而且能够有效提高信噪比,提升 波形质量。本方法对多种滤波方法均能适用,其中 与EMD-MRA联合处理得到的波形信噪比最高,能 在去噪的同时更好地保持原波形的细微特征信息

为目标参数反演和地物特征分析奠定数据基础。

参考文献

- Jérme Riedi. Quality Assessment of Acquired GEDI Waveforms: Case Study over France, Tunisia and French Guiana
 [J]. Remote Sensing, 2021, 13.DOI:10.3390/rs13163144.
- [2] Yang X B, Wang C, Xi X H, et al. Wavelet transform of Gaussian progressive decomposition method for full-waveform LiDAR data [J]. Journal of Infrared and Millimeter Waves, 2017, 36(6):7.DOI: 10.11972/j.issn.1001-9014. 2017.06.019.

(杨学博,王成,习晓环,等.大光斑LiDAR全波形数据小 波变换的高斯递进分解[J].红外与毫米波学报),2017,36(6):7.DOI:10.11972/j.issn.1001-9014.2017.06.019.

- [3] Xu X, Wang J, Wu J, et al. Full-waveform LiDAR echo decomposition method based on deep learning and sparrow search algorithm [J]. Infrared Physics and Technology, 2023, 130.DOI:10.1016/j.infrared.2023.104613.
- [4] Ni-Meister W , Yang W , Lee S , et al. Validating modeled lidar waveforms in forest canopies with airborne laser scanning data [J]. Remote Sensing of Environment, 2017, 204: 229-243.DOI:10.1016/j.rse.2017.10.028.
- [5] Eren F , Pe'Eri S , Rzhanov Y , et al.Bottom characterization by using airborne lidar bathymetry (ALB) waveform features obtained from bottom return residual analysis [J]. Remote Sensing of Environment, 2018, 206: 260–274. DOI:10.1016/j.rse.2017.12.035.
- [6] Bullock E, Healey S P, Yang Z Q. Estimating aboveground biomass density using hybrid statistical inference with GE-DI lidar data and Paraguay's national forest inventory [J]. Environ. Res. Lett. 18 (2023) 085001.
- [7] Luo S Z, Wang C, Xi X H, et al. Forest leaf area index estimation using combined ICESat/ GLAS and optical remote sensing image [J]. Journal of Infrared and Millimeter Waves, 2015, 34 (2). DOI: 10.11972/j. issn. 1001-9014. 2015.02.020.
 (骆社周,王成,习晓环,等.星载激光雷达GLAS与TM光

学遥感联合反演森林叶面积指数[J].红外与毫米波学报), 2015, 34(2).DOI: 10.11972/j.issn.1001-9014.2015. 02.020.

- [8] Zhang C N, Cui Y F, Zhu Z Y, et al. Building Height Extraction from GF-7 Satellite Images Based on Roof Contour Constrained Stereo Matching [J]. Remote Sens. 2022, 14, 1566.
- [9] Tang H, Stoker J, Luthcke S, et al. Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI[J]. Remote Sensing of Environment, 2023, 291. DOI: 10.1016/j.rse. 2023. 113571.
- [10] Wang Z H, Liu X D, Liu X F, et al. Wavelet and Empirical Mode Decomposition Denoising for GLAS Full Waveform Data [j]. Laser & Optoelectronics Progress, 2021 (023):058.DOI:10.3788/LOP202158.2328001.
 (王振华,刘晓丹,刘向锋.GLAS全波形数据的小波与 经验模态分解降噪[J].激光与光电子学进展), 2021 (023):058.DOI:10.3788/LOP202158.2328001.
- [11] Chang J H, Zhu L Y, Li H X, et al. Noise reduction in Lidar signal using correlation-based EMD combined with

soft thresholding and roughness penalty [J]. Optics Communications 407 (2018) 290 - 295. doi.org/10.1016.

- [12] Zuo Z Q, Tang X M, Li G Y, et al. Land Satellite Remote Sensing Adaptive Gaussian filtering of the full waveform of GF-7 satellite laser altimeter[J]. Infrared and Laser Engineering, 2020, 49(11):11.DOI:10.3788/IRLA2020025.
 (左志强、唐新明、李国元、李松.GF-7星载激光测高仪 全波形自适应高斯滤波[J].红外与激光工程), 2020, 49(11):11.DOI:10.3788/IRLA2020025.
- [13] Li L Y, Cai M, Guan X, et al.Piecewise Adaptive-Norm Trend Filtering Method for ICESat/GLAS Waveform Data Denoising [J]. IEEE Access, 2020, 8: 168965–168979. DOI:10.1109/ACCESS.2020.3022886.
- [14] Zhang Z J, Xie H, Tong X H, et al. Denoising for satellite laser altimetry full-waveform data based on EMD-Hurst analysis [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2020, VOL. 13, NO. 11, 1212 - 1229. doi.org/ 10.1080/17538947.2019.1698665
- [15] Zhang Z J, Liu X F, Shu R, et al. A novel noise reduction method for space-borne full waveforms based on empirical mode decomposition [J]. Optik - International Journal for Light and Electron Optics 202 (2020) 163581.
- [16] Li W J, Du L B, Meng X Q, et al. Adaptive Denoising for Airborne LiDAR Bathymetric Full Waveforms Using EMD-Based Multiresolution Analysis [J]. IEEE GEOSCI-ENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024.
- [17] Du B C , Li Z H , Shen G Y , et al. A Photon-Counting Full-Waveform Lidar[J].Chinese Physics Letters, 2019, 36(9):094201.DOI:10.1088/0256-307X/36/9/094201.
- [18] Yu K T and O. Yu O. USING THRESHOLD AND NO-THRESHOLD METHODS OF DISCRETE WAVELET FILTERING OF RADIO LOCATION SIGNALS[J]. Cybernetics and Systems Analysis, Vol. 60, No. 4, July, 2024
- [19] Wai-keung Fung. Implementation and analysis of a parallel kalman filter algorithm for lidar localization based on CUDA technology [J]. Frontiers in Robotics and AI, 10. 3389/frobt.2024.1341689.
- [20] Xu R T Z. A Novel Laser ranging method based on adaptive Kalman filter technology [J]. Microwave and optical technology letters, 2018, 60(12).
- [21] Kong J, Tang X Y, Jiang M, et al. Target tracking based on multi-scale feature extraction Kalman filter[J]. Journal of Infrared and Millimeter Waves, 2011, 30(5):5.DOI: CNKI:SUN:HWYH.0.2011-05-014.
 (孔军,汤心溢,蒋敏,等.基于多尺度特征提取的Kalman 滤波跟踪[J].红外与毫米波学报), 2011, 30(5):5. DOI:CNKI:SUN:HWYH.0.2011-05-014.
- [22] Yang X S. A New Metaheuristic Bat-Inspired Algorithm [J].Springer Berlin Heidelberg, 2010.DOI: 10.1007/978-3-642-12538-6_6.
- [23] Adil N, Lakhbab H. A NEW MODIFIED BAT ALGO-RITHM FOR GLOBAL OPTIMIZATION[J].RAIRO operations research, 2023, 57(5):2659–2685.
- [24] Wang Q S, Wang D Y, Zhang X J, et al. Research on a Decomposing Method of Energy Spectrum Overlapping Peaks Based on Gaussian Sharpening Method [J]. Spectroscopy and Spectral Analysis, 2021, 41(10):6.DOI:10. 3964/j.issn.1000-0593(2021)10-3245-06.

(王青山,王冬阳,张雄杰,等.基于高斯锐化法的重叠 峰分解方法研究[J].光谱学与光谱分析),2021,41 (10):6.DOI:10.3964/j.issn.1000-0593 (2021)10-3245-06.

 $\left[\,25\,\right]$ Lang N , Kalischek N , Armston J , et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles [J].Remote Sensing of Environment, 2022, 268:112760-.DOI:10.1016/j.rse.2021.112760.