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YOLO-Fastest -IR: Ultra-lightweight thermal infrared face detection method
for infrared thermal camera
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Abstract: This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM
CPU. The system consists of a low-resolution long-wavelength infrared detector, a digital temperature and humid-
ity sensor, and a CMOS sensor. In view of the significant contrast between face and background in thermal infra-
red images, this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,
lightweight detector named YOLO-Fastest-IR. Four YOLO-Fastest-IR models (IR0 to IR3) with different scales
are designed based on YOLO-Fastest. To train and evaluate these lightweight models, a multi-user low-resolution
thermal face database (RGBT-MLTF) was collected, and the four networks were trained. Experiments demon-
strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks. The
proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed , making it
more suitable for deployment on mobile platforms or embedded devices. After obtaining the region of interest
(ROI) in the infrared (IR) image, the RGB camera is guided by the thermal infrared face detection results to
achieve fine positioning of the RGB face. Experimental results show that YOLO-Fastest-IR achieves a frame rate
of 92. 9 FPS on a Raspberry Pi 4B and successfully detects 97. 4% of faces in the RGBT-MLTF test set. Ultimate-
ly, an infrared temperature measurement system with low cost, strong robustness, and high real-time perfor-
mance was realized, achieving a temperature measurement accuracy of 0. 3°C.
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Introduction

Infrared thermal cameras (ITCs) have attracted
widespread attention across various sectors due to their
capabilities in large-scale rapid screening, automatic
tracking, high-temperature zone alarms, and visible-
light image fusion, enabling efficient tracking of individ-
uals with elevated temperatures in crowds'”". During the
pandemic, ITCs were widely deployed for inspection and
quarantine in crowded public spaces such as airports, nu-
cleic acid testing sites, subway/train stations, and shop-
ping centers. This approach not only reduces the risk of
cross-infection but also prevents congestion caused by
large-scale temperature screening. Additionally, ITCs
are applicable in chemical heat source monitoring and re-
al-time livestock body temperature tracking on farms"™*

Face detection is a key technology for infrared ther-
mal cameras (ITCs). A high-speed, stable, low-cost,
and robust face detection algorithm enables effective face
detection under varying conditions and ensures accurate
temperature measurement, significantly impacting ITC
performance. Despite substantial progress in face detec-
tion over recent decades, infrared temperature measure-
ment remains challenging. Although numerous models
have been proposed for thermometers™”’ , accurately and
quickly locating faces in infrared images is still a difficult
task. Most existing methods rely solely on a single ther-
mal infrared camera for rudimentary facial detection
based on morphological processing® or perform facial lo-
calization using visible light images. In such approach-
es, the thermal camera first detects faces in visible-spec-
trum images and then maps the positions to infrared imag-
es for temperature measurementm. However, faces are
difficult to detect directly in IR images, and the use of
RGB cameras is limited by their susceptibility to ambient
light interference”. Additionally, human-shaped ob-
jects (e. g., narrow pillars or blurry traffic lights) often
resemble faces'" and may be misidentified by thermome-
ters, leading to false alarms in ITCs and compromising
their practical application. In general, RGB images
alone cannot guarantee high-quality face detection, and
more comprehensive information should be explored to
improve thermometer reliability.

Most ITCs typically utilize high-resolution images as
input to achieve high recall rates, which usually rely on
costly graphics processing units (GPUs) to maintain low
latency'”. To our knowledge, few studies have previous-
ly reported on lightweight ITCs. Limited by infrared face
detection technology and dataset availability, Negishi et
al. employed a mature visible-light face detection algo-
rithm to locate faces'', then mapped the detected face
coordinates to corresponding infrared images for tempera-
ture measurement. However, in addition to inheriting
the limitations of visible-light face detection, this method
suffers from inaccurate coordinate mapping, high compu-
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tational overhead, and low frame rates.

Chaitra Hegde et al. implemented PoseNet-based
forehead positioning for temperature measurement and cy-
anosis detection on a Raspberry Pi edge computing plat-
form . A significant drawback of this approach is that
both forehead and lip detection required computation on
a Google Coral USB accelerator. This system not only ex-
hibits slow face detection speeds and poor positioning ac-
curacy but also incurs high costs, as near-real-time per-
formance can only be achieved with the assistance of the
Google Coral’s Tensor Processing Unit (TPU) neural net-
work accelerator.

Currently, visible-light face detection tasks predom-
inantly utilize the MS COCO dataset, while facial analy-
sis tasks can employ datasets such as Helen''" |,
IBUG'"™ , and 300-W'®. For thermal infrared visual
tasks, UND"'" was the earliest thermal infrared facial da-
taset, introduced in 2003, followed by commonly used
datasets like IRIS" and NVIE™. In 2021, Domenick
Poster et al. ' proposed the ARL-VTF dataset, the most
recent thermal infrared facial dataset, which also compre-
hensively cataloged previous datasets in this domain. Ex-
isting thermal infrared facial datasets primarily focus on
tasks such as facial recognition and emotion recognition.
Consequently, these datasets typically feature images
where a single face occupies most of the frame, with few
or no background interference factors, resulting in gener-
ally high image resolution. Most existing thermal infrared
face detection algorithms based on convolutional neural
networks utilize custom datasets of single-user thermal in-
frared facial images collected by the researchers them-
selves, and these datasets are not publicly available. To
the best of our knowledge, there currently exists no pub-
licly available thermal infrared face dataset specifically
designed for multi-user face detection tasks.

In 2021, Woongkyu Lee et al. proposed a tempera-
ture measurement method based on the SSD model *" .
They customized SSD to identify human face locations
through transfer learning, achieving a speed of 160 FPS
on NVIDIA Jetson AGX while directly detecting faces in
infrared images. However, a limitation of this method is
its difficulty in accurately locating suspicious high-tem-
perature targets in visible images when multiple targets
are present. Friedrich et al. > developed an eye corner
detection algorithm for thermal infrared face detection,
leveraging the characteristic that eye regions typically
show the highest temperature while facial areas show the
lowest. Reese et al. " introduced a gray projection anal-
ysis (Projection Profile Analysis, PPA) method, where
they calculated the gray projection curve of thermal infra-
red images and determined face regions by analyzing
both the curve and its first derivative. Marcin Kopaczka
et al. ' analyzed and compared two detection algorithms
for thermal infrared images, along with five algorithms
predominantly used for visible light face detection.



LI Xi-Cai et al: YOLO-Fastest -IR : Ultra-lightweight thermal infrared face detection method for infrared

XX thermal camera 3

These include the Viola Jones algorithmuﬂ , a variant Vio-
la Jones algorithm replacing Harr features with local bina-
ry pattern features, and a face detection approach com-
bining directional gradient histograms with support vector
machines”™". Deformable component model”” and pix-
el intensity comparisons organized (PICO) in decision
trees ™.

Experimental results demonstrate that conventional
machine learning algorithms primarily designed for visi-
ble-light face detection achieve higher accuracy and low-
er false positive rates compared to those specifically de-
veloped for thermal infrared images. While thermal infra-
red-specific detection algorithms exhibit shorter running
times, the PICO algorithm stands out with the highest
computational efficiency.

In recent years, deep learning approaches have
been increasingly applied to thermal infrared face detec-
tion tasks. In 2017, Alicja et al. modified the Incep-
tionV3 architecture by removing the global pooling opera-
tion™ , This adaptation enabled separate classification
on a 64-grid 8X8 feature map, with face regions deter-
mined by grids exhibiting face probabilities exceeding
0.5. However, their study was confined to single-user
thermal infrared face detection. In 2019, Silva et al. "
adapted the YOLOv3 network®’, training it on thermal
infrared facial datasets and truncating the final prediction
feature map during detection to achieve both high accura-
cy and efficiency. Although YOLO-based detectors inher-
ently support multi-target detection, their application fo-
cused solely on driver detection in autonomous systems,
consequently limiting their dataset to single-user scenari-
0s. Most existing methods directly employ infrared imag-
es to train generic models for infrared target detection,
resulting in models containing substantial redundant in-
formation that limits detection speed improvements. Our
work demonstrates that combining infrared image charac-
teristics with model compound scaling can significantly
enhance model efficiency, paving the way for future ad-
vancements in this field.

This paper presents a high-speed, robust dual-band
face detection system implemented on an ARM CPU for
ITCs. Our ITC system integrates three key components:
(1) a low-resolution infrared detector, (2) a CMOS sen-
sor, and (3) an environmental temperature monitoring
sensor. The system employs the infrared camera for ini-
tial face localization, while the visible-light camera pro-
vides supplementary verification of corresponding facial
features in infrared images. We additionally incorporate
thermal radiation attenuation compensation based on dis-
tance and implement stereo ranging through dataset fit-
ting. To address these challenges, we propose an ultra-
lightweight thermal infrared face detection network and
investigate the impact of various network architectures on
detection performance. For model training, we devel-
oped a comprehensive dual-band face detection dataset
comprising 2, 030 RGB-thermal image pairs with 138,
389 annotated faces. We validated our approach through
experimental prototypes deployed on Raspberry Pi sys-
tems with ARM CPUs. Through systematic compound

scaling of network depth, input resolution, and channel
width, we identified an optimal ultra-lightweight architec-
ture specifically tailored for thermal infrared face detec-
tion applications.

1 Principle of the temperature measure-
ment system

As shown in Fig. 1, a binocular stereo vision sys-
tem composed of an infrared camera and an RGB cam-
era. The raw infrared data obtained by the IR camera is
separated into two branches for further processing. The
raw infrared data captured by the IR camera undergoes
parallel processing through two distinct pathways. In the
first processing branch, the original 16-bit data is dynam-
ically normalized to 8-bit grayscale values based on the
detected maximum and minimum temperatures, follow-
ing the conversion rule specified in Eq. (1) :

[Igm] = (RawData[i] - MinValue)*

255
MaxValue — MinValue

(1)
Where [, is the gray value of infare image, RawDatali]
is 16 bits infrared raw data, MaxValue and MinValue are
the maximum and minimum values in the current frame's
infrared data. In the second processing branch, the raw
data is preserved as backup for temperature measure-
ment. The original resolution of infrared image is 80x60
pixels, and the resolution is resized to 160X120 after in-
terpolation. The gray image is directly used as the input
of the face detector to obtain the region of interest for in-
frared temperature measurement.

After obtaining the face region in the thermal infra-
red image, the region of interest is synchronously
mapped to the corresponding visible light image , thereby
achieving the task of facial detection or identity recogni-
tion in the visible light image, and the amount of visible
data is greatly compressed. In addition, based on the
geometric relationship of binocular stereo vision com-
posed of infrared and RGB cameras, the distance be-
tween the measured individual and the camera can also
be obtained. Finally, the temperature is corrected and
compensated according to the distance and environmen-
tal information to improve the temperature measurement
accuracy.

One of the advantages of our RGB face localization
is splitting a complicated real-world computer vision task
into two easier ones that can be well solved by current
deep learning methods. If we stick to a single visible
RGB camera for cascaded or simultaneous face detection
and eye localization, the input resolution of the CNN will
inevitably be large, resulting in a computationally heavy
network. In this paper, we make the most of guiding
mode by using two tiny-lightweight CNNs. The dual-
band infrared guidance system not only largely reduces
the computational cost but also maintains high accuracy
and robustness. It effectively addresses the trade-off be-
tween high tracking speed, high tracking accuracy, and
strong robustness in conventional visual tracking sys-
tems.




4 AN/ RS9 S g o XX &
RGB : RGB jﬁ»
camera RGR image face detection J
Distance Black
estimation body
| ;
Infrared IR face | | Regionof Temperature | | Temperature ||| |  Output
image detection interest conversion correction temperature
4 Ambient RGB l:'
Infrared Infrared Temp era‘iure : temperature
——‘* measurement region
Camera RAW data P infeared |:|

Fig. 1
B WU BELL AN 2R GE A RN AR i

2 Principle of the temperature measure-
ment system

2.1 The Introduction of lightweight network YO-
LO-Fastest—IR

Since most of the body's thermal radiation is typical-
ly attenuated by clothing, the facial region consistently
exhibits the highest grayscale intensity in thermal imag-
es, creating strong contrast against the background. In
infrared (IR) imaging, faces manifest as bright oval pat-
terns with indistinguishable facial features. This phenom-
enon presents two major challenges: it not only compli-
cates high-precision computer vision tasks such as facial
recognition, emotion analysis, and landmark detection,
but also significantly restricts the extractable feature
space for convolutional neural networks (CNNs) , lead-
ing to limited discriminative deep features for thermal fa-
cial detection. Notably, facial patterns demonstrate dis-
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The procedure of the working process of the dual band ITC system

tinct shape and aspect ratio characteristics compared to
common thermal interference sources (e. g. , electronic
displays, fluorescent lamps, and heated containers).
Therefore, theoretically, lightweight convolutional neu-
ral networks can stably detect faces in IR images.

As illustrated in Figure 2, we validated the afore-
mentioned hypothesis by developing four compact convo-
lutional neural networks of varying complexity levels,
adopting architectural principles from YOLO-Fastest ™.
The red and blue blocks in the schematic diagram denote
the lite convolution module and lite residual module, re-
spectively. This study systematically investigates the im-
pact of network scale through three fundamental dimen-
sions: input resolution, network depth, and channel
width.

Regarding resolution optimization, contemporary ob-
ject detection networks typically employ high input reso-
lutions (416-800 pixels) to accommodate datasets like
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COCO. For lightweight detection networks, resolution re-
duction has become a prevalent strategy for computation-
al efficiency enhancement. However, direct downsam-
pling to 320%X240 pixels inevitably compromises image
details. Notably, our infrared camera’s native resolution
is limited to 160X120 pixels, making bilinear interpola-
tion upscaling to 320X240 potentially counterproductive.
To maintain compatibility with the infrared sensor’s phys-
ical constraints, we configured YOLO-Fastest with a na-
tive 160%120 input resolution while controlling variables
in depth and width dimensions. This approach yielded
four distinct infrared face detection architectures, collec-
tively designated as YOLO-Fastest-IR variants, each fea-
turing optimized depth-width combinations

All four network variants employ an initial 3X3 con-
volutional layer with stride 2 and zero-padding, reducing
the input spatial dimensions by half. Throughout the net-
works, lite residual modules maintain identical input-out-
put dimensions without spatial reduction. The first lite
convolution module in IR1-IR3 preserves feature map di-
mensions, while in IR0, all lite convolution modules uti-
lize depthwise separable convolutions (stride=2 with ze-
ro-padding) for progressive halving of spatial resolution.
Both IR0 and IR1 undergo four spatial reduction stages,
yielding final feature maps of 10x8 grid resolution. The
architectures demonstrate progressive channel expansion
with increasing network depth, as detailed below:

(1) YOLO-Fastest-IRO: As shown in Fig. 2 (a),
YOLO-Fastest employs only three lite convolutional mod-
ules, excluding its first and last two convolutional lay-
ers. The final output grid size is 10X8, making it the net-
work with the fewest layers and the simplest structure.
Due to its shallow architecture, gradient vanishing and
network degradation are virtually absent, eliminating the
need for residual modules.

(2) YOLO-Fastest-IR1: As shown in Fig. 2(b), a
residual module was incorporated into the backbone net-
work , which consists of four lite convolution modules and
two lite residual modules. The final output grid size is
10x8. (3) YOLO-Fastest-IR2: As shown in Fig. 2(e),
a multi-scale prediction strategy was introduced in the
neck network, which employs five lite convolutional mod-
ules and three lite residual modules. The final output
consists of two feature maps with grid sizes of 5X4 and
10x8, responsible for detecting large and small targets,
respectively. The head network uses only a single convo-
lutional layer.

(4) YOLO-Fastest-IR3: As shown in Fig. 2 (d),
the network layers were further deepened, with six convo-
lutional layers employed in the head network. The archi-
tecture ultimately outputs two feature maps with grid siz-
es of 5%X4 and 10X8, making it the network configuration
with the greatest depth and most complex structure
among the compared versions.

(5) YOLO-Fastest-EYE: The overall network struc-
ture is shown in Fig. 2 (e). The facial bounding box
maintains an approximately 1: 1 aspect ratio. For RGB
images with 640x480 resolution, when the user’s face is
approximately 1 meter from the camera, the bounding

box size measures about 160X160 pixels. Accordingly,
YOLO-Fastest-EYE's input image size is set to 160X
160. Following four downsampling operations and one
upsampling of the feature map, the network produces a fi-
nal output tensor of size 20X20%x18. Each grid cell corre-
sponds to 5% of the feature map’s length and width. As
the network only predicts specific facial features (such as
eyes) , the output feature map is limited to 18 channels.
2.2 The Introduction of lightweight network YO-
LO-Fastest—IR

To facilitate comprehensive training of the proposed
networks, we developed the RGBT Multi-user Low-reso-
lution Thermal Face (RGBT-MLTF) dataset. The datas-
et comprises 26, 800 thermal images captured using a
LeptON3. 0 infrared camera (160x120 native resolu-
tion) , with each image containing 1-4 facial instances.
Notably, 76% of the images contain =2 faces, ensuring
adequate multi-face representation. As shown in Fig. 3,
to improve the generalization ability of the model and pre-
vent overfitting, we conducted long-term experiments un-
der different environmental lighting and temperature con-
ditions, including weak light conditions, high exposure
scene, high temperature environment, and low tempera-
ture environment. The dataset covers almost all conven-
tional application scenarios. The dataset is annotated us-
ing labeling, which approximates the head as an ellipse
and labels the outer tangent rectangle of the ellipse as a
real face rectangle. The dataset annotates distant faces,
incomplete faces, and lateral faces, but the back of the
head is not marked. The final dataset contains a total of
5102 faces from 22 people.

Among 2680 images, 1627 images were randomly
selected as the training set, 520 were used as the cross
validation set, and 533 were used as the testing set. The
training set is used to train the four proposed thermal in-
frared face detectors, the cross-validation set is used to
select the optimal network weights from several training
sessions, and the test set is used to test and compare the
performance of different neural network models.

3 Experiment and discussion

3.1 Coordinate mapping relationship between in-
frared and RGB binocular cameras
The infrared sensor employed in this study is
FLIR's Lepton 3.5 module with a resolution of 160X120
pixels, while the visible-light module utilizes a Raspber-
ry Pi camera equipped with an OV5647 sensor (OmniVi-
sion Technologies) offering 1280x720 resolution. Given
the significant disparity in both spatial resolution and
physical alignment between the infrared and RGB imag-
ing systems, direct mapping of thermal facial bounding
box coordinates to visible-light images is infeasible. To
address this, we established a spatial correspondence
model between the two imaging modalities through regres-
sion analysis of the annotated RGBT-MLTF dataset. Spe-
cifically, the coordinate transformation between infrared-
detected facial regions and their RGB counterparts is
computed using Eq. (2).
Xpep = 0.8812%X , + 0.0844 . (2)
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Fig. 3 Examples and statistics of the RGBT-MLTF dataset
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where X, denotes the normalized x-coordinate (relative
to image width) of the original infrared bounding box,
and X, represents the corresponding normalized x-coor-
dinate in the transformed RGB image. The horizontal
and vertical axes correspond to the IR and RGB coordi-
nate systems, respectively. Each sampling point corre-
sponds to a matched pair of face bounding boxes in the
dual-spectrum images. Through linear regression analy-
sis, the transformation relationship as expressed in
Eq. (2).
3.2 Experiment of the thermal infrared face detec-
tion

In this study, we employ the RGBT-MLTF dataset
to train four proposed thermal face detection networks
(YOLO-Fastest-IR series) along with three benchmark
models: YOLO-V4 and YOLO-V8s "', YOLO-Fastest.
We then compare the detection performance of our pro-
posed networks with these state-of-the-art object detec-
tion algorithms. As demonstrated in the first column of
Fig. 4(al-gl), our four thermal infrared face detection
networks maintain stable face detection capability even
in challenging scenes with interference. However, YO-
LO-Fastest-IRO and YOLO-Fastest-IR1 exhibit some
false positives, occasionally misidentifying monitors or
raised fists in the background as faces. The second col-
umn in Fig. 4 (a2-g2) reveals that in multi-person sce-
narios, our four scaled networks successfully detect ther-
mal faces across various sizes, including partially occlud-
ed faces. As shown in the third column in Fig. 4 (a3-
23) , all networks except the shallowest YOLO-Fastest-
IR1 and YOLO-Fastest-IRO achieve reliable face detec-
tion in thermal images. These two smallest networks still
show occasional false positives, while the other five mod-
els demonstrate robust performance.

To further evaluate the generalization capability of
our four YOLO-Fastest-IR models, we performed valida-
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tion tests using a high-resolution thermal infrared facial
dataset from Marcin et al. . The results (Fig. 4 (a4-
24) ) demonstrate varying generalization performance
across detectors: while YOLO-Fastest-IRO and YOLO-
Fastest-IR1 exhibit bounding box deviations from ground
truth, YOLO-Fastest-IR2, YOLO-Fastest-IR3, and YO-
LOv8s achieve accurate face localization (near 100%
confidence) on thermal images significantly different
from the training set. Notably, YOLO-V4 fails to pro-
duce valid predictions at standard confidence thresholds
(0.5), only generating detections when the threshold is
lowered to 0. 1 (Fig. 4(f4)), suggesting potential over-
fitting to the training data. Additionally, as shown in
Fig. 4(a5-g5), although the dataset contains only a lim-
ited number of pseudo-color samples, the IR face detec-
tion networks YOLO-Fastest-IRO and YOLO-Fastest-IR1
proposed in this study can still accurately localize faces
in pseudo-color images. In contrast, YOLO-V8s fails to
reliably detect faces in such pseudo-color images.

Fig. 5(a) presents the experimental results of our
proposed thermal infrared-guided RGB face detection
and eye localization method. The system first employs
YOLO-Fastest-IR to identify facial regions in infrared im-
ages, then utilizes YOLO-Fastest-EYE to precisely lo-
cate eyes within these thermally determined regions of in-
terest. Our results demonstrate that this infrared-guided
approach effectively addresses the challenge of occluded
face detection while preventing abnormal temperature
measurements by the ITC, thereby significantly reducing
false alarm rates. As shown in Fig. 5(e-h), YOLO-Fast-
est-EYE maintains reliable face and eye detection perfor-
mance even under poor lighting conditions. Further-
more, Fig. 5 (i-1) illustrates the system’s capability in
multi-target face detection scenarios. Collectively, these
results confirm that our algorithm exhibits strong robust-
ness across varying lighting conditions and occlusion
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YOLO-Fastest-IR3

Fig. 4 The comparative and generalization experiments of different models: (al~a5) the detection effect of YOLO-Fast-IR0; (b1~b5) the de-
tection effect of YOLO-Fast—=IR1; (c¢l~c5) the detection effect of YOLO-Fast-=IR2; (d1~d5) the detection effect of YOLO-Fast—IR3; (el~e5) the detec-
tion effect of YOLO-Fast; (f1~f5) the detection effect of YOLO-V4; (gl~g5) the detection effect of YOLO-V8s

B4 S[R3 LG A2 AL SE 3645 JL 3T - (al~a5) YOLO-Fast—IRO BRI ; (b1~b5) YOLO-Fast-IR1 (RIS 5 (c1~¢5) YO-
LO-Fast=IR2 (KRR 5 (d1~d5) YOLO-Fast-IR3 BRI ; (el~e5) YOLO-Fast iR I ALA 5 (f1~5) YOLO-V4 By IIECR ; (g1~g5) YOLO-

V8s R AACR

challenges while supporting efficient multi-target detec-
tion.

Fig. 6 presents the comparative performance met-
rics (AP values and FPS) of various network architec-
tures. Our experimental results demonstrate that all four
YOLO-Fast-IR variants satisfy real-time detection re-
quirements while maintaining AP50 values above 90%,
outperforming YOLO-V4, YOLO-V8s, and YOLO-Fast-
est in terms of efficiency. Notably, these lightweight net-
works achieve detection accuracy comparable to YOLO-
V4. All AP values were evaluated on the RGBT-MLTF
dataset, with frame rates measured on Raspberry Pi 4B
CPU hardware. The study reveals that network compres-

sion significantly improves inference speed without sub-
stantial accuracy degradation, confirming that structural-
ly simple lightweight convolutional neural networks are
sufficiently capable of extracting infrared facial features
and achieving reliable face localization. As shown in
Fig. 6, YOLO-Fastest-IR networks exhibit a clear perfor-
mance trade-off: deeper architectures yield higher preci-
sion at the cost of reduced inference speed. An interest-
ing observation is that YOLO-Fastest-IR2 achieves supe-
rior mean precision compared to deeper networks, poten-
tially attributable to favorable convergence conditions
during training.

In object detection tasks, 30 frames per second
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Fig. 5

IR face detection samples of YOLO-Fastest-IR and eye localization in the RGB images results: (a~d) YOLO-Fastest-IR and YOLO-

Fastest—Eye are robust against variations in face angle, inter—viewer occlusion, and environmental occlusion; (e~h) extreme lighting conditions; (i~/)

multi-target and distant viewer detection
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(FPS) is conventionally established as the threshold dis-
tinguishing real-time from non-real-time performance.
While YOLO-V4 and YOLO-V8s achieve real-time opera-
tion on GPU platforms, their inference speed drops sig-
nificantly on Raspberry Pi 4B hardware, requiring over 1
second per frame - far below real-time requirements. No-
tably, YOLO-V4 attains 98.95% AP50 on our RGBT-
MLTF dataset, substantially outperforming its 81.3%
AP50 performance on the MS COCO benchmark. This
performance gap highlights the unique challenges of our

dataset, which intentionally incorporates diverse interfer-
ence factors affecting thermal infrared face detection. In
fact, the RGBT-MLTF dataset presents greater detection
difficulty than images captured in actual ITC system ap-
plications. The comparative performance analysis of
these networks demonstrates that deep learning approach-
es are particularly well-suited for addressing thermal in-
frared face detection challenges in practical ITC deploy-
ment scenarios.

993 [ YOLO-V8s ' ' !
99 Method FPS AP0
; YOLO-Fastest-IR2  YOLO-Fastest-IRO ~ 317.9  94.52
52 A YOLO-Fastest-IR1 12586 95.86
98 | YOLO-FastestIR2 11049 9846 -
675 . YOLO-FastestIR3 929 9737 |
_ volb-Fihedlir3 YOLO-Fastest 7257  97.55
o~ H I .
s 7 YOLO-V4 094 9895
£ 9651 YOLO-V8s 564 9943
96 YOLO-Fastest-IR 1 ]
955 | -
%3] OLO-Fastest-IR0)|
94.5 H _
94 1 | 1 1 1 1
0 50 100 150 200 250 300 FPS

Fig. 6 Comparison of the proposed YOLO-Fastest-IR and other object detectors on the RGBT-MLEL face subset
K6 YOLO-Fastest-IR 5 F:3ii H AR 4576 RGBT-MLEL [l B & 4 L iyl il 45 550 1L



LI Xi-Cai et al: YOLO-Fastest -IR : Ultra-lightweight thermal infrared face detection method for infrared

XX

thermal camera

3.3 Temperature measurement experiments
This section details our temperature measurement
methodology. We established calibration curves by plot-
ting blackbody reference temperatures (vertical axis)
against corresponding infrared camera raw data (horizon-
tal axis) , with each temperature point averaged over 20
measurements. As shown in Fig. 7, the experimental da-
ta (blue curve) and its linear fit (magenta dashed line)
demonstrate the fundamental temperature-radiation rela-
tionship. To investigate thermal radiation’s distance de-
pendence, we conducted systematic measurements at 25
cm intervals from 25-225 em, with 20 trials per distance
averaged for reliability. The resulting distance-depen-
dent characteristics are plotted as the red curve in Fig.
7, with its linear approximation shown as the green dot-
ted line. These relationships are mathematically ex-
pressed in Eq. (3), where i=1 corresponds to the tem-
perature-gray-level correlation (a1=19. 645, b:=0. 1163)
and i=2 represents the distance dependence (a > =
37.514, by=-0.00794).
y=a;+bx (3)
Based on Planck’s radiation law, the grayscale val-
ue of each infrared image pixel exhibits a direct propor-
tionality to the thermal radiation energy at the correspond-
ing point on the target surface. However, thermal imag-
ers measure the radiation temperature (7,) rather than
the true object temperature (T,) , where the latter repre-
sents the equivalent blackbody temperature emitting iden-
tical radiative energy. Consequently, accurate tempera-
ture measurement requires calibration using high-preci-
sion blackbody sources to establish the precise mapping
relationship between preset blackbody temperatures and
sensor output voltages. The fundamental relationship be-
tween radiation temperature (T.) and true temperature

(T,) is mathematically expressed in Equation (4).
1.1 | L
To={_ [T~ (1-&)T) - (=D @

The wavelength-dependent parameter N varies ac-
cording to the infrared detector material characteristics :

N = 8.68 for InSh detectors (3-5 wm spectral range) ,
\ = 5. 33 for HgCdTe detectors (6-9 wm range) , and \ =
4.09 for our implemented HgCdTe detector (8-14 pum
range). Since atmospheric transmittance (t.) effects are
negligible in close-range thermometry applications, we
assume {,=1, yielding the gray-body surface temperature
calculation formula in Equation (5). This governing
equation incorporates three key parameters: & represents
skin emissivity (typically 0. 98 for human tissue) , T

denotes the radiation temperature detected by the infra-
red sensor, and T, signifies ambient temperature mea-
sured using auxiliary temperature/humidity sensors.
Through this formulation, we can accurately estimate
forehead temperature in clinical measurement scenarios.

1
Ty = 4T = (1= ) T 5)

To validate the proposed method’s effectiveness, we
conducted comprehensive temperature measurement ex-
periments using our binocular vision system. Experimen-
tal results in Fig. 8 demonstrate that our algorithm main-
tains stable face detection and accurate forehead tempera-
ture measurement across varying distances (both close
and long range) and different scenarios (single or multi-
ple subjects). Furthermore, as evidenced in Figs. 5 and
8, the infrared face detection algorithm exhibits strong ro-
bustness, successfully handling challenging cases includ-
ing masked faces, partial occlusions, and diverse facial
poses. Notably, Fig. 8 (e) illustrates a false high-tem-
perature warning scenario where a cup’s surface intrudes
into the facial region during drinking. To mitigate such
occurrences in practical implementations, we employ
precise eye-position-based localization to strictly define
the valid temperature measurement area.

To validate the temperature measurement accuracy
of our ITC system, we conducted rigorous testing under
varying ambient temperatures and distances using a
blackbody reference source. Each measurement point
was averaged over five trials to ensure reliability. As
shown in Fig. 9(a), the measured temperature exhibits

Distance/cm
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38.0 = — Linear fit of raw data G ol
i T —m—Raw data D e
i = '— — Linear fit of raw data D .-/
NN o7 4370
375 AN .
o A .
5 N ] El
S0t \\ P E
= U~ =
g P 36.5 g
5365 o \ . &
‘/. ./\\\ i
36.0 ‘/’ <
C/ RN 36.0
355k o7 -
] 1
135 140 145 150 155 160
Grayscalc

Fig. 7 The variation of grayscale values with temperature at different distances
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Fig 8 The real time temperature measurement experiment of temperature measurement system: (a) normal sitting and standing; (b) wear a
mask; (c) interference testing at different distances; (d) remote temperature measurement experiment; (e) high temperature warning test; (f) remote
multi—targel lemperature measurement experiment; (g) side face test; (h) fist interference experiment.
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a linear decrease with increasing distance, and higher
ambient temperatures consistently yield elevated mea-
surement values. In complementary human subject test-
ing, we performed comparative evaluations against clini-
cal forehead thermometers across 11 distinct measure-
ment distances. The experimental results in Fig. 9 (b)
demonstrate that while uncorrected infrared measure-
ments (blue curve) show distance-dependent attenua-
tion, our distance-compensated algorithm (green curve)
maintains consistent accuracy across all tested ranges.
Notably, at close ranges (<1m), the ITC achieves com-
parable accuracy to clinical forehead thermometers. Be-
yond this range, our system demonstrates superior perfor-
mance with an accuracy of +0. 3°C, while simultaneously
maintaining excellent measurement repeatability and sta-
bility.

4 Conclusions

In this paper, we develop a dual-band infrared tem-
perature measurement device (ITC) capable of measur-
ing forehead temperature. The device integrates an infra-

red detector, an RGB sensor, and a humidity sensor for
environmental monitoring. Furthermore, we propose four
tiny-lightweight thermal infrared face detectors at differ-
ent scales, designated as YOLO-Fastest-IRO through YO-
LO-Fastest-IR3. Experimental results on our newly pro-
posed RGBT-MLTF dataset demonstrate that the YOLO-
Fastest-IR series outperforms existing algorithms (includ-
ing YOLOv4 and YOLO-Fastest) in mobile and edge
computing deployment scenarios. Specifically, while the
tiny version achieves the fastest inference speed and
maintains acceptable accuracy for infrared thermometry
applications (albeit with a slight reduction in face local-
ization precision compared to larger models) , YOLO-
Fastest-IRO with its minimal network architecture shows
limited detection capability due to insufficient network
depth. Notably, the other variants demonstrate robust
performance, achieving >95% average accuracy with >
90 FPS on Raspberry Pi 4B hardware. Comparative stud-
ies against YOLO-Fastest, YOLOv4, and YOLOv8s re-
veal that our proposed architectures significantly improve
computational efficiency with minimal accuracy degrada-
tion. The network structure can be adaptively adjusted

36.5 38
s @) | S L/ !-Il!lli(b)
36.0 . =0 { '
S S 4
- L3 -
i - . 34 i
L - 3 P,
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Fig. 9 Analysis of temperature measurement accuracy of ITC: (a) the variation relationship of different temperatures of blackbody under different

environmental temperatures and distances; (b) temperature correction experiment
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based on specific vision tasks to achieve optimal preci-
sion-speed trade-offs. Experimental results confirm both
the effectiveness of our ITC device and the superior per-
formance of the proposed face detection framework.
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