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Abstract： This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM 
CPU.  The system consists of a low-resolution long-wavelength infrared detector， a digital temperature and humid⁃
ity sensor， and a CMOS sensor.  In view of the significant contrast between face and background in thermal infra⁃
red images， this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny， 
lightweight detector named YOLO-Fastest-IR.  Four YOLO-Fastest-IR models （IR0 to IR3） with different scales 
are designed based on YOLO-Fastest.  To train and evaluate these lightweight models， a multi-user low-resolution 
thermal face database （RGBT-MLTF） was collected， and the four networks were trained.  Experiments demon⁃
strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.  The 
proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed， making it 
more suitable for deployment on mobile platforms or embedded devices.  After obtaining the region of interest 

（ROI） in the infrared （IR） image， the RGB camera is guided by the thermal infrared face detection results to 
achieve fine positioning of the RGB face.  Experimental results show that YOLO-Fastest-IR achieves a frame rate 
of 92. 9 FPS on a Raspberry Pi 4B and successfully detects 97. 4% of faces in the RGBT-MLTF test set.  Ultimate⁃
ly， an infrared temperature measurement system with low cost， strong robustness， and high real-time perfor⁃
mance was realized， achieving a temperature measurement accuracy of 0. 3°C.
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YOLO-Fastest-IR:面向红外热像仪的超轻量级热红外人脸检测网络
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摘要：本文介绍了一种基于 ARM CPU 的高速鲁棒的双波段热成像测温相机，该测温仪由低分辨率长波红外

探测器、数字温湿度的传感器和CMOS传感器组成。针对热红外图像中人脸与背景对比度大的现象，本文探

索了一种平衡了人脸检测精度与速度的折衷方案，并提出了一个超型轻量级热红外人脸检测，将之命名为

YOLO-Fastest-IR。基于YOLO-Fastest设计了四种不同尺度的热红外人脸检测器YOLO-Fastest-IR0至 IR3。为

了对 4个超轻量级网络训练和测试，本文还设计了一套多用户低分辨率热人脸数据集（RGBT-MLTF），并对四

个网络完成了训练。实验表明，轻量级卷积神经网络在热红外人脸检测任务中表现出色。该算法在定位精

度和速度上均优于现有的人脸检测算法，且更适宜部署在移动平台或嵌入式设备中。在红外图像（IR）中获

取感兴趣区域后，根据热红外人脸检测结果对 RGB相机进行引导，实现 RGB人脸的精细定位。实验结果表

明，YOLO-Fastest-IR在树莓派 4B上的帧率高达 92.9 FPS，在RGBT-MLTF测试集中人脸定位成功率达 97.4%。
最终实现了低成本、强鲁棒性和高实时性的测温系统集成，测温精度可达0.3 ℃。
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Introduction
Infrared thermal cameras （ITCs） have attracted widespread attention across various sectors due to their capabilities in large-scale rapid screening， automatic tracking， high-temperature zone alarms， and visible-light image fusion， enabling efficient tracking of individ⁃uals with elevated temperatures in crowds［1-2］.  During the pandemic， ITCs were widely deployed for inspection and quarantine in crowded public spaces such as airports， nu⁃cleic acid testing sites， subway/train stations， and shop⁃ping centers.  This approach not only reduces the risk of cross-infection but also prevents congestion caused by large-scale temperature screening.  Additionally， ITCs are applicable in chemical heat source monitoring and re⁃al-time livestock body temperature tracking on farms［3-4］.Face detection is a key technology for infrared ther⁃mal cameras （ITCs）.  A high-speed， stable， low-cost， and robust face detection algorithm enables effective face detection under varying conditions and ensures accurate temperature measurement， significantly impacting ITC performance.  Despite substantial progress in face detec⁃tion over recent decades， infrared temperature measure⁃ment remains challenging.  Although numerous models have been proposed for thermometers［5-7］， accurately and quickly locating faces in infrared images is still a difficult task.  Most existing methods rely solely on a single ther⁃mal infrared camera for rudimentary facial detection based on morphological processing［8］ or perform facial lo⁃calization using visible light images.  In such approach⁃es， the thermal camera first detects faces in visible-spec⁃trum images and then maps the positions to infrared imag⁃es for temperature measurement［9］.  However， faces are difficult to detect directly in IR images， and the use of RGB cameras is limited by their susceptibility to ambient light interference［10］.  Additionally， human-shaped ob⁃jects （e. g. ， narrow pillars or blurry traffic lights） often resemble faces［11］ and may be misidentified by thermome⁃ters， leading to false alarms in ITCs and compromising their practical application.  In general， RGB images alone cannot guarantee high-quality face detection， and more comprehensive information should be explored to improve thermometer reliability.Most ITCs typically utilize high-resolution images as input to achieve high recall rates， which usually rely on costly graphics processing units （GPUs） to maintain low latency［12］.  To our knowledge， few studies have previous⁃ly reported on lightweight ITCs.  Limited by infrared face detection technology and dataset availability， Negishi et al.  employed a mature visible-light face detection algo⁃rithm to locate faces［13］， then mapped the detected face coordinates to corresponding infrared images for tempera⁃ture measurement.  However， in addition to inheriting the limitations of visible-light face detection， this method suffers from inaccurate coordinate mapping， high compu⁃

tational overhead， and low frame rates.Chaitra Hegde et al.  implemented PoseNet-based forehead positioning for temperature measurement and cy⁃anosis detection on a Raspberry Pi edge computing plat⁃form ［5］.  A significant drawback of this approach is that both forehead and lip detection required computation on a Google Coral USB accelerator.  This system not only ex⁃hibits slow face detection speeds and poor positioning ac⁃curacy but also incurs high costs， as near-real-time per⁃formance can only be achieved with the assistance of the Google Coral's Tensor Processing Unit （TPU） neural net⁃work accelerator.Currently， visible-light face detection tasks predom⁃inantly utilize the MS COCO dataset， while facial analy⁃sis tasks can employ datasets such as Helen［14］ ， IBUG［15］， and 300-W［16］.  For thermal infrared visual tasks， UND［17］ was the earliest thermal infrared facial da⁃taset， introduced in 2003， followed by commonly used datasets like IRIS［18］ and NVIE［19］.  In 2021， Domenick Poster et al. ［20］ proposed the ARL-VTF dataset， the most recent thermal infrared facial dataset， which also compre⁃hensively cataloged previous datasets in this domain.  Ex⁃isting thermal infrared facial datasets primarily focus on tasks such as facial recognition and emotion recognition.  Consequently， these datasets typically feature images where a single face occupies most of the frame， with few or no background interference factors， resulting in gener⁃ally high image resolution.  Most existing thermal infrared face detection algorithms based on convolutional neural networks utilize custom datasets of single-user thermal in⁃frared facial images collected by the researchers them⁃selves， and these datasets are not publicly available.  To the best of our knowledge， there currently exists no pub⁃licly available thermal infrared face dataset specifically designed for multi-user face detection tasks.In 2021， Woongkyu Lee et al.  proposed a tempera⁃ture measurement method based on the SSD model［21］ .  They customized SSD to identify human face locations through transfer learning， achieving a speed of 160 FPS on NVIDIA Jetson AGX while directly detecting faces in infrared images.  However， a limitation of this method is its difficulty in accurately locating suspicious high-tem⁃perature targets in visible images when multiple targets are present.  Friedrich et al. ［22］ developed an eye corner detection algorithm for thermal infrared face detection， leveraging the characteristic that eye regions typically show the highest temperature while facial areas show the lowest.  Reese et al. ［23］ introduced a gray projection anal⁃ysis （Projection Profile Analysis， PPA） method， where they calculated the gray projection curve of thermal infra⁃red images and determined face regions by analyzing both the curve and its first derivative.  Marcin Kopaczka et al. ［24］ analyzed and compared two detection algorithms for thermal infrared images， along with five algorithms predominantly used for visible light face detection.  
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These include the Viola Jones algorithm［25］， a variant Vio⁃la Jones algorithm replacing Harr features with local bina⁃ry pattern features， and a face detection approach com⁃bining directional gradient histograms with support vector machines［26-27］.  Deformable component model［27］ and pix⁃el intensity comparisons organized （PICO） in decision trees［28］.Experimental results demonstrate that conventional machine learning algorithms primarily designed for visi⁃ble-light face detection achieve higher accuracy and low⁃er false positive rates compared to those specifically de⁃veloped for thermal infrared images.  While thermal infra⁃red-specific detection algorithms exhibit shorter running times， the PICO algorithm stands out with the highest computational efficiency.In recent years， deep learning approaches have been increasingly applied to thermal infrared face detec⁃tion tasks.  In 2017， Alicja et al.  modified the Incep⁃tionV3 architecture by removing the global pooling opera⁃tion［29］， This adaptation enabled separate classification on a 64-grid 8×8 feature map， with face regions deter⁃mined by grids exhibiting face probabilities exceeding 0. 5.  However， their study was confined to single-user thermal infrared face detection.  In 2019， Silva et al. ［30］ adapted the YOLOv3 network［31］， training it on thermal infrared facial datasets and truncating the final prediction feature map during detection to achieve both high accura⁃cy and efficiency.  Although YOLO-based detectors inher⁃ently support multi-target detection， their application fo⁃cused solely on driver detection in autonomous systems， consequently limiting their dataset to single-user scenari⁃os.  Most existing methods directly employ infrared imag⁃es to train generic models for infrared target detection， resulting in models containing substantial redundant in⁃formation that limits detection speed improvements.  Our work demonstrates that combining infrared image charac⁃teristics with model compound scaling can significantly enhance model efficiency， paving the way for future ad⁃vancements in this field.This paper presents a high-speed， robust dual-band face detection system implemented on an ARM CPU for ITCs.  Our ITC system integrates three key components： 
（1） a low-resolution infrared detector， （2） a CMOS sen⁃sor， and （3） an environmental temperature monitoring sensor.  The system employs the infrared camera for ini⁃tial face localization， while the visible-light camera pro⁃vides supplementary verification of corresponding facial features in infrared images.  We additionally incorporate thermal radiation attenuation compensation based on dis⁃tance and implement stereo ranging through dataset fit⁃ting.  To address these challenges， we propose an ultra-lightweight thermal infrared face detection network and investigate the impact of various network architectures on detection performance.  For model training， we devel⁃oped a comprehensive dual-band face detection dataset comprising 2，030 RGB-thermal image pairs with 138，389 annotated faces.  We validated our approach through experimental prototypes deployed on Raspberry Pi sys⁃tems with ARM CPUs.  Through systematic compound 

scaling of network depth， input resolution， and channel width， we identified an optimal ultra-lightweight architec⁃ture specifically tailored for thermal infrared face detec⁃tion applications.
1 Principle of the temperature measure⁃
ment system 

As shown in Fig.  1， a binocular stereo vision sys⁃tem composed of an infrared camera and an RGB cam⁃era.  The raw infrared data obtained by the IR camera is separated into two branches for further processing.  The raw infrared data captured by the IR camera undergoes parallel processing through two distinct pathways. In the first processing branch， the original 16-bit data is dynam⁃ically normalized to 8-bit grayscale values based on the detected maximum and minimum temperatures， follow⁃ing the conversion rule specified in Eq.  （1）：
[ Igray ] =  (RawData[ i] -  MinValue)*

255
 MaxValue -  MinValue

 . (1)
Where Igray is the gray value of infare image， RawData［i］ is 16 bits infrared raw data， MaxValue and MinValue are the maximum and minimum values in the current frame's infrared data.  In the second processing branch， the raw data is preserved as backup for temperature measure⁃ment.  The original resolution of infrared image is 80×60 pixels， and the resolution is resized to 160×120 after in⁃terpolation.  The gray image is directly used as the input of the face detector to obtain the region of interest for in⁃frared temperature measurement.After obtaining the face region in the thermal infra⁃red image， the region of interest is synchronously mapped to the corresponding visible light image， thereby achieving the task of facial detection or identity recogni⁃tion in the visible light image， and the amount of visible data is greatly compressed.  In addition， based on the geometric relationship of binocular stereo vision com⁃posed of infrared and RGB cameras， the distance be⁃tween the measured individual and the camera can also be obtained.  Finally， the temperature is corrected and compensated according to the distance and environmen⁃tal information to improve the temperature measurement accuracy.One of the advantages of our RGB face localization is splitting a complicated real-world computer vision task into two easier ones that can be well solved by current deep learning methods.  If we stick to a single visible RGB camera for cascaded or simultaneous face detection and eye localization， the input resolution of the CNN will inevitably be large， resulting in a computationally heavy network.  In this paper， we make the most of guiding mode by using two tiny-lightweight CNNs.  The dual-band infrared guidance system not only largely reduces the computational cost but also maintains high accuracy and robustness.  It effectively addresses the trade-off be⁃tween high tracking speed， high tracking accuracy， and strong robustness in conventional visual tracking sys⁃tems.
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2 Principle of the temperature measure⁃
ment system 
2. 1　The Introduction of lightweight network YO⁃
LO-Fastest-IR　Since most of the body's thermal radiation is typical⁃ly attenuated by clothing， the facial region consistently exhibits the highest grayscale intensity in thermal imag⁃es， creating strong contrast against the background.  In infrared （IR） imaging， faces manifest as bright oval pat⁃terns with indistinguishable facial features.  This phenom⁃enon presents two major challenges： it not only compli⁃cates high-precision computer vision tasks such as facial recognition， emotion analysis， and landmark detection， but also significantly restricts the extractable feature space for convolutional neural networks （CNNs）， lead⁃ing to limited discriminative deep features for thermal fa⁃cial detection.  Notably， facial patterns demonstrate dis⁃

tinct shape and aspect ratio characteristics compared to common thermal interference sources （e. g. ， electronic displays， fluorescent lamps， and heated containers）.  Therefore， theoretically， lightweight convolutional neu⁃ral networks can stably detect faces in IR images.As illustrated in Figure 2， we validated the afore⁃mentioned hypothesis by developing four compact convo⁃lutional neural networks of varying complexity levels， adopting architectural principles from YOLO-Fastest［32］.  The red and blue blocks in the schematic diagram denote the lite convolution module and lite residual module， re⁃spectively.  This study systematically investigates the im⁃pact of network scale through three fundamental dimen⁃sions： input resolution， network depth， and channel width.Regarding resolution optimization， contemporary ob⁃ject detection networks typically employ high input reso⁃lutions （416-800 pixels） to accommodate datasets like 

Fig.  1　The procedure of the working process of the dual band ITC system
图1　双波段红外测温系统组成和工作流程

Fig.  2　The YOLO-Fastest-IR network structures with four different levels of complexity
图2　四种不同复杂度的热红外人脸检测网络YOLO-Fastest-IR结构
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COCO.  For lightweight detection networks， resolution re⁃duction has become a prevalent strategy for computation⁃al efficiency enhancement.  However， direct downsam⁃pling to 320×240 pixels inevitably compromises image details.  Notably， our infrared camera's native resolution is limited to 160×120 pixels， making bilinear interpola⁃tion upscaling to 320×240 potentially counterproductive.  To maintain compatibility with the infrared sensor's phys⁃ical constraints， we configured YOLO-Fastest with a na⁃tive 160×120 input resolution while controlling variables in depth and width dimensions.  This approach yielded four distinct infrared face detection architectures， collec⁃tively designated as YOLO-Fastest-IR variants， each fea⁃turing optimized depth-width combinationsAll four network variants employ an initial 3×3 con⁃volutional layer with stride 2 and zero-padding， reducing the input spatial dimensions by half.  Throughout the net⁃works， lite residual modules maintain identical input-out⁃put dimensions without spatial reduction.  The first lite convolution module in IR1-IR3 preserves feature map di⁃mensions， while in IR0， all lite convolution modules uti⁃lize depthwise separable convolutions （stride=2 with ze⁃ro-padding） for progressive halving of spatial resolution.  Both IR0 and IR1 undergo four spatial reduction stages， yielding final feature maps of 10×8 grid resolution.  The architectures demonstrate progressive channel expansion with increasing network depth， as detailed below：
（1） YOLO-Fastest-IR0： As shown in Fig.  2（a）， YOLO-Fastest employs only three lite convolutional mod⁃ules， excluding its first and last two convolutional lay⁃ers.  The final output grid size is 10×8， making it the net⁃work with the fewest layers and the simplest structure.  Due to its shallow architecture， gradient vanishing and network degradation are virtually absent， eliminating the need for residual modules.
（2） YOLO-Fastest-IR1： As shown in Fig.  2（b）， a residual module was incorporated into the backbone net⁃work， which consists of four lite convolution modules and two lite residual modules.  The final output grid size is 10×8.  （3） YOLO-Fastest-IR2： As shown in Fig.  2（c）， a multi-scale prediction strategy was introduced in the neck network， which employs five lite convolutional mod⁃ules and three lite residual modules.  The final output consists of two feature maps with grid sizes of 5×4 and 10×8， responsible for detecting large and small targets， respectively.  The head network uses only a single convo⁃lutional layer.
（4） YOLO-Fastest-IR3： As shown in Fig.  2（d）， the network layers were further deepened， with six convo⁃lutional layers employed in the head network.  The archi⁃tecture ultimately outputs two feature maps with grid siz⁃es of 5×4 and 10×8， making it the network configuration with the greatest depth and most complex structure among the compared versions.
（5） YOLO-Fastest-EYE： The overall network struc⁃ture is shown in Fig.  2（e）.  The facial bounding box maintains an approximately 1：1 aspect ratio.  For RGB images with 640×480 resolution， when the user's face is approximately 1 meter from the camera， the bounding 

box size measures about 160×160 pixels.  Accordingly， YOLO-Fastest-EYE's input image size is set to 160×160.  Following four downsampling operations and one upsampling of the feature map， the network produces a fi⁃nal output tensor of size 20×20×18.  Each grid cell corre⁃sponds to 5% of the feature map's length and width.  As the network only predicts specific facial features （such as eyes）， the output feature map is limited to 18 channels.
2. 2　The Introduction of lightweight network YO⁃
LO-Fastest-IR　To facilitate comprehensive training of the proposed networks， we developed the RGBT Multi-user Low-reso⁃lution Thermal Face （RGBT-MLTF） dataset.  The datas⁃et comprises 26，800 thermal images captured using a LeptON3. 0 infrared camera （160×120 native resolu⁃tion）， with each image containing 1-4 facial instances.  Notably， 76% of the images contain ≥2 faces， ensuring adequate multi-face representation.  As shown in Fig.  3， to improve the generalization ability of the model and pre⁃vent overfitting， we conducted long-term experiments un⁃der different environmental lighting and temperature con⁃ditions， including weak light conditions， high exposure scene， high temperature environment， and low tempera⁃ture environment.  The dataset covers almost all conven⁃tional application scenarios.  The dataset is annotated us⁃ing labeling， which approximates the head as an ellipse and labels the outer tangent rectangle of the ellipse as a real face rectangle.  The dataset annotates distant faces， incomplete faces， and lateral faces， but the back of the head is not marked.  The final dataset contains a total of 5102 faces from 22 people.Among 2680 images， 1627 images were randomly selected as the training set， 520 were used as the cross validation set， and 533 were used as the testing set.  The training set is used to train the four proposed thermal in⁃frared face detectors， the cross-validation set is used to select the optimal network weights from several training sessions， and the test set is used to test and compare the performance of different neural network models.
3 Experiment and discussion 
3. 1　 Coordinate mapping relationship between in⁃
frared and RGB binocular cameras　The infrared sensor employed in this study is FLIR's Lepton 3. 5 module with a resolution of 160×120 pixels， while the visible-light module utilizes a Raspber⁃ry Pi camera equipped with an OV5647 sensor （OmniVi⁃sion Technologies） offering 1280×720 resolution.  Given the significant disparity in both spatial resolution and physical alignment between the infrared and RGB imag⁃ing systems， direct mapping of thermal facial bounding box coordinates to visible-light images is infeasible.  To address this， we established a spatial correspondence model between the two imaging modalities through regres⁃sion analysis of the annotated RGBT-MLTF dataset.  Spe⁃cifically， the coordinate transformation between infrared-detected facial regions and their RGB counterparts is computed using Eq.  （2）.

XRGB = 0.8812*XIR + 0.0844 . (2)
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where XIR denotes the normalized x-coordinate （relative to image width） of the original infrared bounding box， and XRGB represents the corresponding normalized x-coor⁃dinate in the transformed RGB image.  The horizontal and vertical axes correspond to the IR and RGB coordi⁃nate systems， respectively.  Each sampling point corre⁃sponds to a matched pair of face bounding boxes in the dual-spectrum images.  Through linear regression analy⁃sis， the transformation relationship as expressed in Eq.  （2）.
3. 2　Experiment of the thermal infrared face detec⁃
tion　In this study， we employ the RGBT-MLTF dataset to train four proposed thermal face detection networks 
（YOLO-Fastest-IR series） along with three benchmark models： YOLO-V4 and YOLO-V8s ［33］， YOLO-Fastest.  We then compare the detection performance of our pro⁃posed networks with these state-of-the-art object detec⁃tion algorithms.  As demonstrated in the first column of Fig.  4（a1-g1）， our four thermal infrared face detection networks maintain stable face detection capability even in challenging scenes with interference.  However， YO⁃LO-Fastest-IR0 and YOLO-Fastest-IR1 exhibit some false positives， occasionally misidentifying monitors or raised fists in the background as faces.  The second col⁃umn in Fig.  4（a2-g2） reveals that in multi-person sce⁃narios， our four scaled networks successfully detect ther⁃mal faces across various sizes， including partially occlud⁃ed faces.  As shown in the third column in Fig.  4（a3-g3）， all networks except the shallowest YOLO-Fastest-IR1 and YOLO-Fastest-IR0 achieve reliable face detec⁃tion in thermal images.  These two smallest networks still show occasional false positives， while the other five mod⁃els demonstrate robust performance.To further evaluate the generalization capability of our four YOLO-Fastest-IR models， we performed valida⁃

tion tests using a high-resolution thermal infrared facial dataset from Marcin et al.  ［34］.  The results （Fig.  4（a4-g4）） demonstrate varying generalization performance across detectors： while YOLO-Fastest-IR0 and YOLO-Fastest-IR1 exhibit bounding box deviations from ground truth， YOLO-Fastest-IR2， YOLO-Fastest-IR3， and YO⁃LOv8s achieve accurate face localization （near 100% confidence） on thermal images significantly different from the training set.  Notably， YOLO-V4 fails to pro⁃duce valid predictions at standard confidence thresholds 
（0. 5）， only generating detections when the threshold is lowered to 0. 1 （Fig.  4（f4））， suggesting potential over⁃fitting to the training data.  Additionally， as shown in Fig.  4（a5-g5）， although the dataset contains only a lim⁃ited number of pseudo-color samples， the IR face detec⁃tion networks YOLO-Fastest-IR0 and YOLO-Fastest-IR1 proposed in this study can still accurately localize faces in pseudo-color images.  In contrast， YOLO-V8s fails to reliably detect faces in such pseudo-color images.Fig.  5（a） presents the experimental results of our proposed thermal infrared-guided RGB face detection and eye localization method.  The system first employs YOLO-Fastest-IR to identify facial regions in infrared im⁃ages， then utilizes YOLO-Fastest-EYE to precisely lo⁃cate eyes within these thermally determined regions of in⁃terest.  Our results demonstrate that this infrared-guided approach effectively addresses the challenge of occluded face detection while preventing abnormal temperature measurements by the ITC， thereby significantly reducing false alarm rates.  As shown in Fig.  5（e-h）， YOLO-Fast⁃est-EYE maintains reliable face and eye detection perfor⁃mance even under poor lighting conditions.  Further⁃more， Fig.  5（i-l） illustrates the system's capability in multi-target face detection scenarios.  Collectively， these results confirm that our algorithm exhibits strong robust⁃ness across varying lighting conditions and occlusion 

Fig.  3　Examples and statistics of the RGBT-MLTF dataset
图3　部分RGBT-MLTF数据集示例和统计信息

6



XX 期 
LI Xi-Cai et al：YOLO-Fastest -IR： Ultra-lightweight thermal infrared face detection method for infrared 

thermal camera

challenges while supporting efficient multi-target detec⁃tion. Fig.  6 presents the comparative performance met⁃rics （AP values and FPS） of various network architec⁃tures.  Our experimental results demonstrate that all four YOLO-Fast-IR variants satisfy real-time detection re⁃quirements while maintaining AP50 values above 90%， outperforming YOLO-V4， YOLO-V8s， and YOLO-Fast⁃est in terms of efficiency.  Notably， these lightweight net⁃works achieve detection accuracy comparable to YOLO-V4.  All AP values were evaluated on the RGBT-MLTF dataset， with frame rates measured on Raspberry Pi 4B CPU hardware. The study reveals that network compres⁃

sion significantly improves inference speed without sub⁃stantial accuracy degradation， confirming that structural⁃ly simple lightweight convolutional neural networks are sufficiently capable of extracting infrared facial features and achieving reliable face localization.  As shown in Fig.  6， YOLO-Fastest-IR networks exhibit a clear perfor⁃mance trade-off： deeper architectures yield higher preci⁃sion at the cost of reduced inference speed.  An interest⁃ing observation is that YOLO-Fastest-IR2 achieves supe⁃rior mean precision compared to deeper networks， poten⁃tially attributable to favorable convergence conditions during training.In object detection tasks， 30 frames per second 

Fig.  4　The comparative and generalization experiments of different models：（a1~a5） the detection effect of YOLO-Fast-IR0； （b1~b5） the de⁃tection effect of YOLO-Fast-IR1； （c1~c5） the detection effect of YOLO-Fast-IR2； （d1~d5） the detection effect of YOLO-Fast-IR3； （e1~e5） the detec⁃tion effect of YOLO-Fast； （f1~f5） the detection effect of YOLO-V4； （g1~g5） the detection effect of YOLO-V8s
图 4　不同模型的对比测试和泛化实验结果分析：（a1~a5） YOLO-Fast-IR0的检测效果；（b1~b5） YOLO-Fast-IR1的检测效果；（c1~c5） YO⁃LO-Fast-IR2 的检测效果；（d1~d5） YOLO-Fast-IR3 的检测效果；（e1~e5） YOLO-Fast 的检测效果；（f1~f5） YOLO-V4 的检测效果；（g1~g5） YOLO-V8s的检测效果
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（FPS） is conventionally established as the threshold dis⁃
tinguishing real-time from non-real-time performance.  
While YOLO-V4 and YOLO-V8s achieve real-time opera⁃
tion on GPU platforms， their inference speed drops sig⁃
nificantly on Raspberry Pi 4B hardware， requiring over 1 
second per frame - far below real-time requirements.  No⁃
tably， YOLO-V4 attains 98. 95% AP50 on our RGBT-
MLTF dataset， substantially outperforming its 81. 3% 
AP50 performance on the MS COCO benchmark.  This 
performance gap highlights the unique challenges of our 

dataset， which intentionally incorporates diverse interfer⁃ence factors affecting thermal infrared face detection.  In fact， the RGBT-MLTF dataset presents greater detection difficulty than images captured in actual ITC system ap⁃plications.  The comparative performance analysis of these networks demonstrates that deep learning approach⁃es are particularly well-suited for addressing thermal in⁃frared face detection challenges in practical ITC deploy⁃ment scenarios.

Fig.  5　IR face detection samples of YOLO-Fastest-IR and eye localization in the RGB images results：（a~d） YOLO-Fastest-IR and YOLO-Fastest-Eye are robust against variations in face angle， inter-viewer occlusion， and environmental occlusion； （e~h） extreme lighting conditions； （i~l） multi-target and distant viewer detection
图 5　YOLO-Fastest-IR热红外人脸检测结果及在RGB图像中人眼定位效果：（a-d） YOLO-Fastest-IR与YOLO-Fastest-Eye对脸部角度变
化、观察者间遮挡及环境遮挡具有鲁棒性；（e-h） 极端光照条件；（i-l） 多目标及远距离观察者检测

Fig.  6　Comparison of the proposed YOLO-Fastest-IR and other object detectors on the RGBT-MLEL face subset
图6　YOLO-Fastest-IR与主流目标检测器在RGBT-MLEL面部数据集上的测试结果对比
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3. 3　Temperature measurement experiments　This section details our temperature measurement methodology.  We established calibration curves by plot⁃ting blackbody reference temperatures （vertical axis） against corresponding infrared camera raw data （horizon⁃tal axis）， with each temperature point averaged over 20 measurements.  As shown in Fig.  7， the experimental da⁃ta （blue curve） and its linear fit （magenta dashed line） demonstrate the fundamental temperature-radiation rela⁃tionship.  To investigate thermal radiation's distance de⁃pendence， we conducted systematic measurements at 25 cm intervals from 25-225 cm， with 20 trials per distance averaged for reliability.  The resulting distance-depen⁃dent characteristics are plotted as the red curve in Fig.  7， with its linear approximation shown as the green dot⁃ted line.  These relationships are mathematically ex⁃pressed in Eq.  （3）， where i=1 corresponds to the tem⁃perature-gray-level correlation （a₁=19. 645， b₁=0. 1163） and i=2 represents the distance dependence （a ₂ =37. 514， b₂=-0. 00794）.y = ai + bi x (3)
Based on Planck's radiation law， the grayscale val⁃ue of each infrared image pixel exhibits a direct propor⁃tionality to the thermal radiation energy at the correspond⁃ing point on the target surface.  However， thermal imag⁃ers measure the radiation temperature （Tr） rather than the true object temperature （T0）， where the latter repre⁃sents the equivalent blackbody temperature emitting iden⁃tical radiative energy.  Consequently， accurate tempera⁃ture measurement requires calibration using high-preci⁃sion blackbody sources to establish the precise mapping relationship between preset blackbody temperatures and sensor output voltages.  The fundamental relationship be⁃tween radiation temperature （Tr） and true temperature 

（T0） is mathematically expressed in Equation （4）.
T0 = { 1

ε [ 1
ta

T λ
r - (1 - ε)T λ

u - ( 1
ta

- 1)T λ
a ] }1

λ . (4)
The wavelength-dependent parameter λ varies ac⁃cording to the infrared detector material characteristics： 

λ = 8. 68 for InSb detectors （3-5 μm spectral range）， λ = 5. 33 for HgCdTe detectors （6-9 μm range）， and λ = 4. 09 for our implemented HgCdTe detector （8-14 μm range）.  Since atmospheric transmittance （t ₐ） effects are negligible in close-range thermometry applications， we assume ta=1， yielding the gray-body surface temperature calculation formula in Equation （5）.  This governing equation incorporates three key parameters： ε represents skin emissivity （typically 0. 98 for human tissue）， Tᵣ denotes the radiation temperature detected by the infra⁃red sensor， and Tu signifies ambient temperature mea⁃sured using auxiliary temperature/humidity sensors.  Through this formulation， we can accurately estimate forehead temperature in clinical measurement scenarios.
TM = 1

ε * (T λ
r - (1 - ε)*T λ

u ) 1
λ . (5)

To validate the proposed method's effectiveness， we conducted comprehensive temperature measurement ex⁃periments using our binocular vision system.  Experimen⁃tal results in Fig.  8 demonstrate that our algorithm main⁃tains stable face detection and accurate forehead tempera⁃ture measurement across varying distances （both close and long range） and different scenarios （single or multi⁃ple subjects）.  Furthermore， as evidenced in Figs.  5 and 8， the infrared face detection algorithm exhibits strong ro⁃bustness， successfully handling challenging cases includ⁃ing masked faces， partial occlusions， and diverse facial poses.  Notably， Fig.  8（e） illustrates a false high-tem⁃perature warning scenario where a cup's surface intrudes into the facial region during drinking.  To mitigate such occurrences in practical implementations， we employ precise eye-position-based localization to strictly define the valid temperature measurement area.To validate the temperature measurement accuracy of our ITC system， we conducted rigorous testing under varying ambient temperatures and distances using a blackbody reference source.  Each measurement point was averaged over five trials to ensure reliability.  As shown in Fig.  9（a）， the measured temperature exhibits 

Fig.  7　The variation of grayscale values with temperature at different distances
图7　不同距离下灰度值随温度的变化关系
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a linear decrease with increasing distance， and higher ambient temperatures consistently yield elevated mea⁃surement values.  In complementary human subject test⁃ing， we performed comparative evaluations against clini⁃cal forehead thermometers across 11 distinct measure⁃ment distances.  The experimental results in Fig.  9（b） demonstrate that while uncorrected infrared measure⁃ments （blue curve） show distance-dependent attenua⁃tion， our distance-compensated algorithm （green curve） maintains consistent accuracy across all tested ranges.  Notably， at close ranges （<1m）， the ITC achieves com⁃parable accuracy to clinical forehead thermometers.  Be⁃yond this range， our system demonstrates superior perfor⁃mance with an accuracy of ±0. 3°C， while simultaneously maintaining excellent measurement repeatability and sta⁃bility.
4 Conclusions 

In this paper， we develop a dual-band infrared tem⁃perature measurement device （ITC） capable of measur⁃ing forehead temperature.  The device integrates an infra⁃

red detector， an RGB sensor， and a humidity sensor for environmental monitoring.  Furthermore， we propose four tiny-lightweight thermal infrared face detectors at differ⁃ent scales， designated as YOLO-Fastest-IR0 through YO⁃LO-Fastest-IR3.  Experimental results on our newly pro⁃posed RGBT-MLTF dataset demonstrate that the YOLO-Fastest-IR series outperforms existing algorithms （includ⁃ing YOLOv4 and YOLO-Fastest） in mobile and edge computing deployment scenarios.  Specifically， while the tiny version achieves the fastest inference speed and maintains acceptable accuracy for infrared thermometry applications （albeit with a slight reduction in face local⁃ization precision compared to larger models）， YOLO-Fastest-IR0 with its minimal network architecture shows limited detection capability due to insufficient network depth.  Notably， the other variants demonstrate robust performance， achieving >95% average accuracy with >90 FPS on Raspberry Pi 4B hardware.  Comparative stud⁃ies against YOLO-Fastest， YOLOv4， and YOLOv8s re⁃veal that our proposed architectures significantly improve computational efficiency with minimal accuracy degrada⁃tion.  The network structure can be adaptively adjusted 

Fig 8　The real time temperature measurement experiment of temperature measurement system：（a） normal sitting and standing； （b） wear a mask； （c） interference testing at different distances； （d） remote temperature measurement experiment； （e） high temperature warning test； （f） remote multi-target temperature measurement experiment； （g） side face test； （h） fist interference experiment.
图 8　红外测温系统的实时温度测量实验：（a） 正常坐立状态；（b） 佩戴口罩；（c） 不同距离干扰；（d） 远程测温；（e） 高温报警；（f） 远程多目标
测温；（g） 侧脸；（h） 握拳干扰

Fig.  9　Analysis of temperature measurement accuracy of ITC：（a） the variation relationship of different temperatures of blackbody under different environmental temperatures and distances； （b） temperature correction experiment
图9　红外测温系统的测温精度分析：（a） 不同环境温度及距离下黑体各温度点的变化关系；（a） 温度修正实验
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based on specific vision tasks to achieve optimal preci⁃sion-speed trade-offs.  Experimental results confirm both the effectiveness of our ITC device and the superior per⁃formance of the proposed face detection framework.
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